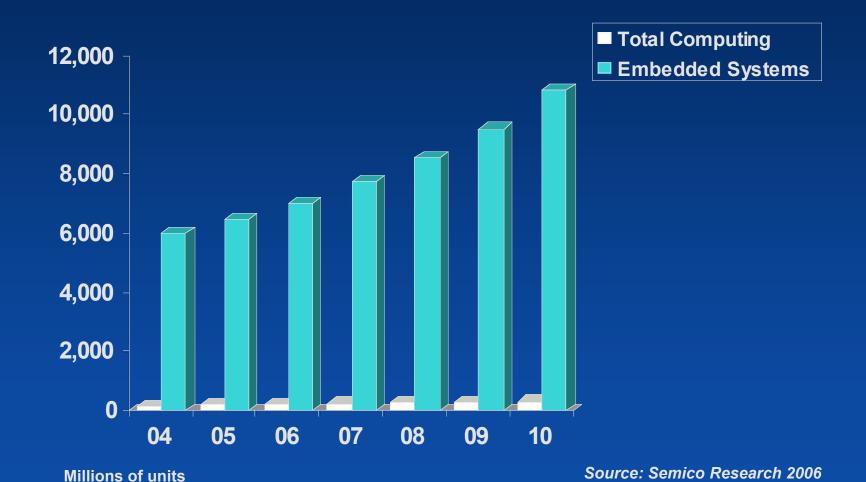


## Flash and the Embedded Space

Prepared by: Grady Lambert SMART Modular Technologies grady.lambert@smartm.com


# Flash Memory SUMMIT

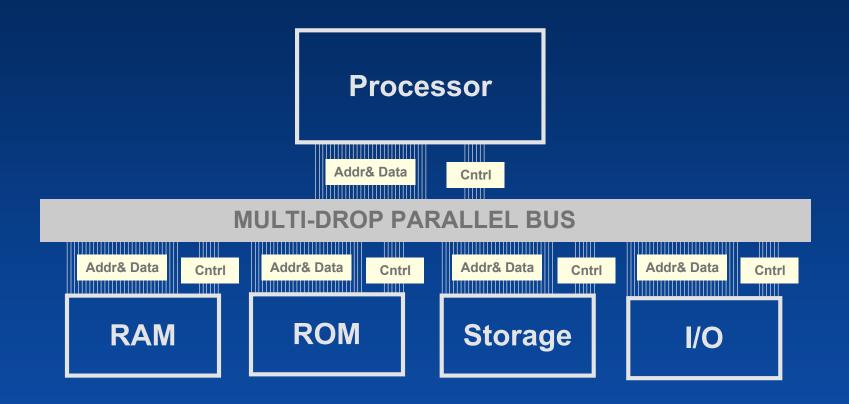
#### **Outline**

- Embedded Computing Market Outlook
- Embedded System Defined
  - Basic Computing Architecture (Yesterday and Today)
  - Moore's Law
- Embedded Systems Transformation
  - Component to Component, Board to Board, Box to Box
  - Multi-drop Parallel buses replaced by Point to Point Serial buses
- Emergence of high speed Serial Protocols & Modules
  - Protocols 1394, USB, SATA, PCIe
  - Modules USB MK, Express Card, SD/MMC, SSD
- Factors driving Non-Volatile Mass Storage Requirements
  - Low Power, Zero Latency, Improved MTBF
- Benefits & Threats to NAND based Serial Modules
  - Benefits Density, Cost/bit
  - Threats Retail sector drives production MLC vs. SLC, Hybrid Drives
- Solution Set Examples
  - USB uDOC, eUSB
  - SSD SATA, SAS
- Future Trends and Applications
  - Bootability, Hot Swap, MS Vista Ready Boost Drive



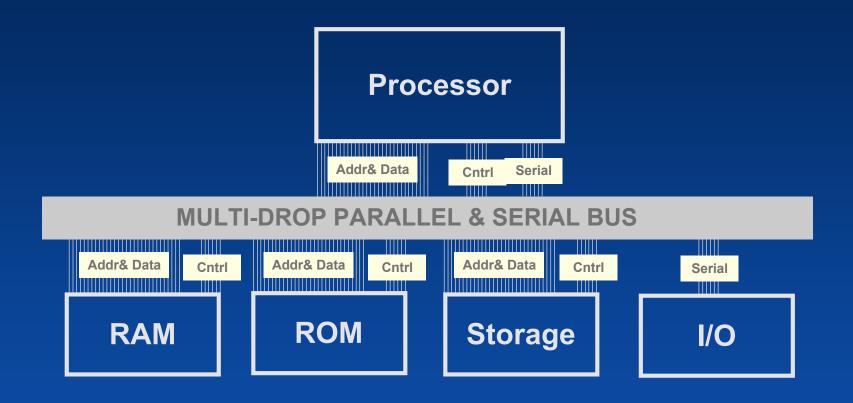
### **Embedded Systems Market Outlook**





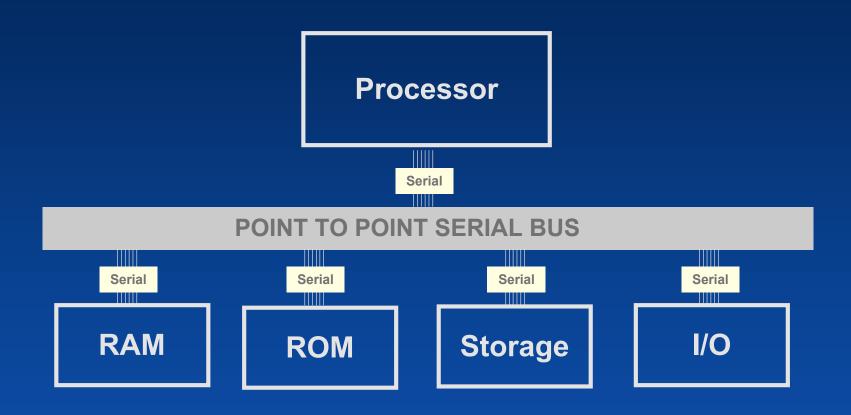

#### **Embedded System Defined**

- Embedded Systems Hardware & Software based platforms used to Compute, Control and Communicate.
- Examples Application Specific PC's/PDA's,
   Servers, Telecom, Storage, etc.




### **Embedded System Transformation**






### **Embedded System Transformation**





### **Embedded System Transformation**





#### Emergence of High Speed Serial Bus Protocols

- Transformation from Multi-drop Parallel Bus to Point to Point
   Serial Bus realized at all levels:
  - Chip2Chip SPI, I2C,
  - Device2Device PCle, sRIO
  - Board2Board (Backplane) ASI
  - Box2Box USB, 1394, SATA, SAS
- Box2Box embedded transformation leverages path paved by Desktop/Laptop market demand – USB/1394 established
- Embedded Design moving toward modular integration SBCs' follow consumer PC trends
- Mass Storage requirements ever increasing need to satisfy speed, cost and density



## Factors Driving Flash based Mass Storage Needs

- High Performance Read/Write Operations
- High System Clock Speeds avoid noise and crosstalk associated with High Speed Parallel
- Low Power
- High Density
- Plug-n-Play
- Non Volatile
- MTBF



## Benefits & Threats to Serial Flash Memory based Mass Storage Devices

#### Benefits

- Reduced IO count
- Improved HW Interoperability
- High Read/Write Performance

#### Threats

- Retail Market drives Flash NAND Component Requirements
  - SLC 10x endurance vs MLC
  - MLC long term endurance TBD
  - MLC offers lowest cost, highest density



## Solution Set Examples

#### Standard Memory Card Form-factors

- CompactFlash (legacy)
- USB Flash Drive
- Secure Digital (SD)
- MultiMedia (MMC)
- ExpressCard



## **Embedded Memory Modules**

- uDOC
- eUSB



#### **SSD Form-factors**

- Mini-IDE (legacy)
- 1.8", 2.5" & 3.5" SATA SSD





# OS Influence on Serial based Flash Protocols

- MS Windows Vista
  - ReadyBoost use Flash Memory as System Cache
  - ReadyDrive Mechanical drive uses flash as Cache to avoid latency of spin-up
- RTOS Readiness

| RTOS      | USB 2.0 | IEEE-1394 | SATA | PCle    |
|-----------|---------|-----------|------|---------|
| Integrity | ✓       | ×         | ×    | ×       |
| Linux     | ✓       | ✓         | ✓    | ✓       |
| LynxOS    | ✓       | ×         | ×    | ×       |
| Nucleus   | ✓       | ×         | ×    | ×       |
| OS-9      | ✓       | ×         | ×    | ×       |
| QNX       | ✓       | ✓         | ✓    | Planned |
| VxWorks   | ✓       |           |      |         |
| WinCE/XPe | ✓       | ✓         | ✓    | ✓       |



Grady Lambert is responsible for SMART Modular Technologies' Flash Memory Product Line. A member of the SMART team for nine years, Lambert has more than 12 years of engineering and management experience in Non-Volatile Memory Technology.