# Pre-enabling designs with ONFI (Open NAND Flash Interface)

**Shahed Ameer** 

Applications Engineer Flash Memory Group, Intel



# Agenda

- Reasons for ONFI
  - Current situation
  - Why ONFI is needed
- What is ONFI
- How to use ONFI
- Current status



# Inconsistency of NAND Flash

- Higher Performance
  - Parallel operations
  - Faster timing
- Higher Density
  - (Multi-level cell) MLC
  - Fewer erase cycles
- Process Improvements
  - 70nm, 55nm.....



## Similar: Basic Commands

- Basic commands typically common
  - Reset, Read ID, Read, Page Program, Erase, ...
- More complex operations all over the map

Table 1. Command Sets

| Function                         | 1st. Cycle | 2nd. Cycle |
|----------------------------------|------------|------------|
| Read                             | 00h        | 30h        |
| Read for Copy Back               | 00h        | 35h        |
| Read ID                          | 90h        | -          |
| Reset                            | FFh        | -          |
| Page Program                     | 80h        | 10h        |
| Cache Program                    | 80h        | 15h        |
| Copy-Back Program                | 85h        | 10h        |
| Block Erase                      | 60h        | D0h        |
| Random Data Input <sup>*1</sup>  | 85h        | -          |
| Random Data Output <sup>*1</sup> | 05h        | E0h        |
| Read Status                      | 70h        |            |

<sup>\*</sup>Samsung K9K4G08U0M datasheet

| FUNCTION              | 1st CYCLE | 2nd CYCLE |
|-----------------------|-----------|-----------|
| READ 1                | 00h       | 30h       |
| READ FOR COPY-BACK    | 00h       | 35h       |
| READ ID               | 90h       | -         |
| RESET                 | FFh       | -         |
| PAGE PROGRAM (start)  | 80h       | 10h       |
| COPY BACK PGM (start) | 85h       | 10h       |
| CACHE PROGRAM         | 80h       | 15h       |
| BLOCK ERASE           | 60h       | D0h       |
| READ STATUS REGISTER  | 70h       | -         |
| RANDOM DATA INPUT     | 85h       | -         |
| RANDOM DATA OUTPUT    | 05h       | E0h       |
| CACHE READ START      | 00h       | 31h       |
| CACHE READ EXIT       | 34h       | -         |
| LOCK BLOCK            | 2Ah       | -         |
| LOCK TIGHT            | 2Ch       | -         |
| UNLOCK (start area)   | 23h       | -         |
| UNLOCK (end area)     | 24h       | -         |
| READ LOCK STATUS      | 7Ah       | -         |

Table 4: Command Set



<sup>\*</sup>Other names and brands may be claimed as the property of others

# **Similar: Timing**

- Timing requirements are specified differently
- Min/max values are not necessarily the same for similar cycle time parts



\*Samsung K9K4G08U0M datasheet



\*Hynix HY27UG084G2M datasheet



<sup>\*</sup>Other names and brands may be claimed as the property of others

# Similar: Status Values

Write Protect

Write Protect

Definition

Fail: "1"

Fail: "1"

- Status values dependent on command
- Often the same, but not required to be
  - Can you tell that these are the same??

| I/O No. | Page Program  | Block Erase Cache Prorgam |                 | Rea     | ad      |             | D   |
|---------|---------------|---------------------------|-----------------|---------|---------|-------------|-----|
| I/O 0   | Pass/Fail     | Pass/Fail                 | Pass/Fail(N)    | Not use |         | Pass : "0"  |     |
| I/O 1   | Not use       | Not use                   | Pass/Fail(N-1)  | Not use |         | Pass : "0"  |     |
| I/O 2   | Not use       | Not use                   | Not use Not use |         | Not use |             | red |
| I/O 3   | Not Use       | Not Use                   | e Not Use       |         | Not Use |             | red |
| I/O 4   | Not Use       | Not Use                   | Not Use         | Not l   | Jse     | Don't -ca   | red |
| I/O 5   | Ready/Busy    | Ready/Busy                | True Ready/Busy | Ready   |         | Page        |     |
| I/O 6   | Ready/Busy    | Ready/Busy                | Ready/Busy      | Ready   | Ю       | Program     |     |
| 1/07    | Write Protect | Write Protect             | Write Protect   | Write I | 0       | Pass / Fail | P.  |

\*Hynix HY27UG084G2M datasheet

| ю | Page<br>Program | Block<br>Erase | Cache<br>Program        | Read          | Cache<br>Read           | CODING                                                              |
|---|-----------------|----------------|-------------------------|---------------|-------------------------|---------------------------------------------------------------------|
| 0 | Pass / Fail     | Pass / Fail    | Pass / Fail (N)         | NA            |                         | Pass: '0' Fail: '1'                                                 |
| 1 | NA              | NA             | Pass / Fail (N-1)       | NA            |                         | Pass: '0' Fail: '1'<br>(Only for Cache Program,<br>else Don't care) |
| 2 | NA              | NA             | NA                      | NA            |                         | -                                                                   |
| 3 | NA              | NA             | NA                      | NA            |                         | -                                                                   |
| 4 | NA              | NA             | NA                      | NA            |                         | -                                                                   |
| 5 | Ready/Busy      | Ready/Busy     | P/E/R<br>Controller Bit | Ready/Busy    | P/E/R<br>Controller Bit | Active: '0' Idle: '1'                                               |
| 6 | Ready/Busy      | Ready/Busy     | Cache Register<br>Free  | Ready/Busy    | Ready/Busy              | Busy: '0' Ready': '1'                                               |
| 7 | White Duetest   | Muita Duatast  | Muita Duatast           | Muita Dustast |                         | Protected: '0' Not                                                  |

Write Protect

Write Protect



Protected: '1'

<sup>\*</sup>Samsung K9K4G08U0M datasheet

<sup>\*</sup>Other names and brands may be claimed as the property of others

# Similar: Read ID

- The first and second byte are consistently manufacturer and device ID
- The number of remaining bytes and what they mean is up in the air

#### \*Samsung K9K4G08U0M datasheet

|                      | Description                                     |
|----------------------|-------------------------------------------------|
| 1st Byte             | Maker Code                                      |
| 2 <sup>nd</sup> Byte | Device Code                                     |
| 3 <sup>rd</sup> Byte | Don't care                                      |
| 4 <sup>th</sup> Byte | Page Size, Block Size, Spare Size, Organization |

\*Toshiba TH58NVG1S3AFT05 datasheet

|                      | Descripton                                             | 1/08   | 1/07 | 1/06 | I/O5 | 1/04 | 1/03 | 1/02 | I/O1 | Hex Data   |
|----------------------|--------------------------------------------------------|--------|------|------|------|------|------|------|------|------------|
| 1 <sup>st</sup> Data | Maker Code                                             | 1      | 0    | 0    | 1    | 1    | 0    | 0    | 0    | 98H        |
| 2 <sup>nd</sup> Data | Device Code                                            | 1      | 1    | 0    | 1    | 1    | 0    | 1    | 0    | DAH        |
| 3 <sup>rd</sup> Data | Chip Number, Cell Type,<br>PGM Page, Write Cache       | 0 or 1 | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 81H or 01H |
| 4 <sup>th</sup> Data | Page Size, Block Size,<br>Redundant Size, Organization | 0 or 1 | 0    | 0    | 1    | 0    | 1    | 0    | 1    | 95H or 15H |
| 5 <sup>th</sup> Data | Plane Number, Plane Size                               | 0 or 1 | 1    | 0    | 0    | 0    | 1    | 0    | 0    | 44H or C4H |

<sup>\*</sup>Other names and brands may be claimed as the property of others



## **Similar Hinders NAND Adoption**

- To deal with differences, the host must maintain a chip ID table of known devices
  - Table contains read/write timings, organization, status bit meanings, etc for each known NAND Flash part
- Situation has two major effects:
  - Precludes intro of new NAND devices into existing designs
  - Makes qualification cycles longer as each NAND device added requires changes to be comprehended
- Similar to the ancient disk drive interfaces that required a list of disk drive types in a BIOS table

Lack of standard impacts platforms supporting a range of NAND



### **Product Update Cycle for HDD**



- No software changes required
- Product-level testing and validation focus
- Physical and logical interface standard



# Product Update Cycle for NAND



- Firmware/software changes required
  - Change device ID table to support new component
  - Add support for new commands to maintain or increase performance
  - Update timing to comprehend new part
  - Update ECC to comprehend bit rate
- Potentially spin new Mask ROM (1 month delay)
- Complete re-test of firmware and/or software



# **Delayed Opportunities...**



- NAND Flash requires more qualification time than other commodity memory products
- Lost revenue opportunity that could be rectified with standard interface
  - Impossible today for controller to anticipate and be prepared for upcoming Flash behavior

Lack of standard interface impacts time to market and revenue



#### What is ONFI

- ONFI is a specification for a standardized NAND Flash interface
- ONFI ensures no pre-association with NAND Flash at host design is required
  - Adds mechanism for a device to self-describe its features, capabilities, etc to the host via a parameter page
  - Features that cannot be self-described in a parameter page (like number of CE#) is host discoverable
- ONFI leverages existing Flash behavior to the extent possible
  - Intent is to enable orderly and TTM transition, so highly divergent behavior from existing NAND undesired
  - Where prudent for longevity or capability need, existing Flash behavior is modified or expanded
- ONFI enables future innovation
  - ONFI provides an infrastructure that supports future feature additions and enhancements in a structured way.



#### What is in ONFI

- Standardized pin-out
- Device Abstraction
- Standardized Command set
- Self-reporting
- Electrical parameters
- Timing
- Bad block marking



#### How to use ONFI

- ONFI is intended to be used to enable new NAND devices without having to update system software
  - Similar to flash already qualified
- The parameter page is a central part of the ONFI spec that is used to describe the NAND device's architecture and capabilities
- Key sections of the parameter page:
  - ONFI revision
  - Supported features
    - x16, on-board ECC, non-sequential page program, interleaving
  - Supported optional commands
    - Read Status Enhance, Page Cache Program, etc
  - Memory organization
    - Page size, max bad blocks, ECC, endurance, etc
  - Electrical characteristics
    - Timings supported
- ONFI can be used to standardize new features and faster performance.
- System software can be updated to make use of these features via ONFI



# **Determining ONFI Support**

- Read ID is used by Flash parts today to report device ID for use in chip ID table lookup
- ONFI support is shown by responding to Read ID for address 20h with ASCII 'ONFI'
- Support for vendor specific interface and ONFI allowed by changing address cycle to 20h from 0h





# Command Set Overview

| Command              | O/M | 1 <sup>st</sup> Cycle | 2 <sup>nd</sup> Cycle | Acceptable<br>while<br>Accessed<br>LUN is<br>Busy | Acceptable<br>while<br>Other<br>LUNs are<br>Busy |
|----------------------|-----|-----------------------|-----------------------|---------------------------------------------------|--------------------------------------------------|
| Read                 | M   | 00h                   | 30h                   |                                                   | Y                                                |
| Change Read Column   | М   | 05h                   | E0h                   |                                                   | Y                                                |
| Read Cache           | 0   | 31h                   |                       |                                                   |                                                  |
| Read Cache End       | 0   | 3Fh                   |                       |                                                   |                                                  |
| Read Cache Enhanced  | 0   | 00h                   | 31h                   |                                                   | Υ                                                |
| Block Erase          | M   | 60h                   | D0h                   |                                                   | Υ                                                |
| Read Status          | M   | 70h                   |                       | Υ                                                 | Υ                                                |
| Read Status Enhanced | 0   | 78h                   |                       | Υ                                                 | Y                                                |
| Page Program         | M   | 80h                   | 10h                   |                                                   | Υ                                                |
| Page Cache Program   | 0   | 80h                   | 15h                   |                                                   | Υ                                                |
| Change Write Column  | M   | 85h                   |                       |                                                   | Υ                                                |
| Read ID              | M   | 90h                   |                       |                                                   |                                                  |
| Read Parameter Page  | M   | ECh                   |                       |                                                   |                                                  |
| Get Features         | 0   | EEh                   |                       |                                                   |                                                  |
| Set Features         | 0   | EFh                   |                       |                                                   |                                                  |
| Reset                | М   | FFh                   |                       | Υ                                                 | Y                                                |
| Read for Copyback    | 0   | 00h                   | 35h                   |                                                   | Υ                                                |
| Copyback Program     | 0   | 85h                   | 10h                   |                                                   | Y                                                |



# **Timing Requirements**

- NAND contains a lot of timing requirements and hence timings
- Reporting each and every timing value leads to validation challenge
  - Requires validation of all combinations
- To make timing information useful, organized into timing modes

|           | 5                                |
|-----------|----------------------------------|
| Parameter | Description                      |
| tADL      | Minimum ALE to data loading time |
| tALH      | Minimum ALE hold time            |
| tALS      | Minimum ALE setup time           |
| tAR       | Minimum ALE to RE# delay         |
| tBERS     | Maximum block erase time         |
| tCEA      | Maximum CE# access time          |
| tCH       | Minimum CE# hold time            |
| tCHZ      | Maximum CE# high to output hi-Z  |
| tCLH      | Minimum CLE hold time            |
| tCLR      | Minimum CLE to RE# delay         |
|           |                                  |
| tREH      | Minimum RE# high hold time       |
| tRHOH     | Minimum RE# high to output hold  |
| tRHW      | Minimum RE# high to WE# low      |
| tRHZ      | Maximum RE# high to output hi-Z  |
| tRLOH     | Minimum RE# low to output hold   |
| tRP       | Minimum RE# pulse width          |
| tRR       | Minimum Ready to RE# low         |
| tRST      | Maximum device reset time        |
| tWB       | Maximum WE# high to R/B# low     |
| tWC       | Minimum write cycle time         |
| tWH       | Minimum WE# high hold time       |
| tWHR      | Minimum WE# high to RE# low      |
| tWP       | Minimum WE# pulse width          |



# Timing Modes

- Timing modes define vast majority of required host timings as one "set"
- Three parameters are specified separately in RPP
  - Max page read time
  - Max block erase time
  - Max page program time
- Timing modes supported reported in timing parameters block of RPP

| Parameter | Mo<br>Exa | Unit |    |
|-----------|-----------|------|----|
|           | 3         | 30   | ns |
|           | Min       | Max  |    |
| tADL      | 100       |      | ns |
| tALH      | 5         |      | ns |
| tALS      | 10        |      | ns |
| tAR       | 10        |      | ns |
| tCEA      |           | 25   | ns |
| tCH       | 5         |      | ns |
| tCHZ      |           | 20   | ns |
| tCLH      | 5         |      | ns |
| tCLR      | 10        |      | ns |
| tCLS      | 15        |      | ns |
|           |           |      | ns |
| tWB       |           | 100  | ns |
| tWC       | 30        |      | ns |
| tWH       | 10        |      | ns |
| tWHR      | 60        |      | ns |
| tWP       | 15        |      | ns |



# **ONFI Technical Highlights**

- ONFI support is identified via Read ID, the standard NAND chip ID command
- NAND devices report their capabilities using the Read Parameter Page
- ONFI standardizes the base subset of commands required to be supported by all NAND devices
- ONFI supports increased performance through parallelism made possible by multiple LUNs and interleaved addressing
- ONFI standardizes the pin-out and packaging to ensure no PCB changes are required for a new NAND part

ONFI provides the solid technical base necessary to confidently build NAND-based products



#### **ONFI Status**

- ONFI workgroup working on defining the specification
  - Solid revision 0.7
  - 1.0 Release Candidate expected by September
- Strong industry backing
  - ONFI founders are Hynix, Intel, Micron, Phison, Sony and STM
  - ONFI members currently include Alcor Micro, Avid Electronics, BitMicro, Cypress, DatalO, Denali, InComm, Intelliprop, Marvell, Powerchip Semiconductor, Seagate, Silicon Motion, Skymedi, Spansion
- ONFI web site is at http://www.onfi.org/



<sup>\*</sup>Other names and brands may be claimed as the property of others

# Summary

- Lack of standard makes it harder for platforms to support a range of NAND components, including components introduced at a later date
- Lack of standard NAND Flash interface impacts time to market and revenue
- ONFI is being developed to solve the barriers to the rapid adoption of new NAND products
- ONFI enables NAND feature self- identification, and standardizes command set, pin-out, and packaging



# OPEN NAND FLASH INTERFACE