suMMIT

Chief Technologist
Data I/O Corporation



Why NAND?

Programming and Time-to-Market

Two stories---NOR and NAND
Avoiding Pitfalls in Programming NAND

Further Information



Flash (NAND and NOR)
Flash cards (MMC, SD)

Flash based microcontrollers
Logic (FPGAs, CPLDs, etc.)

* Programming methods:
e In-System Programming (ISP)
e |In socket
— Manual
— Automated
— Off-line
— On-line



ID Check

Blank check (erase if not blank)

Write content (gang mode)

Write dynamic data (serial number, etc.)
Verify content against original image
Apply sector protection (if any)



suMMIT




Desktop
Automated
Programming

Programming Methods

Programming Programming

Just in time
Programming

"
n
J

Engineering, R&D

Image Writer

FlashPAK

Road Runner
Series PS Series



short “life time” products:

* 1 month delay = 15% of potential revenue

3 month delay = 50% of potential revenue

» Sub-standard programming methods cost

semiconductor companies millions of dollars per
line (due to RMAS)



= NAND is less expensive than NOR

= NAND can program faster than NOR
NAND has more endurance than NOR

MLC NAND is available in large densities



40%
30%
20%
10%

0%

Percent of cell ph

M Internal Storage
B Work Storage
] Work Memory

2005 2006 2007 2008 2009 2010

Internal Storage = NAND (only) shadowed into LP DRAM




application.

NAND can have defective memory cells; typically NAND is delivered
from the factory with entire blocks of memory marked as “bad”.

You will permanently damage a NAND device if you erase the entire
device.

Writing and erasing NAND can cause a block to go bad at any time;
statistically significant at over 1000 cycles; ECC required.

MLC can have more “bit-flips” than SLC; more ECC bits required.

Programming NAND flash is much more complicated!

10



» to verify the data each time you read it, detect corrupted
bits and recover the original data.

X = Wear leveling

e where frequent read/writes are required, a program is
used to keep track of the used locations and move this
activity around to different physical locations.

X = Garbage collection

e where previous versions of data (that have been updated
and placed somewhere else) are erased so that a

complete erase block is available to the system for more
storage.

11



0011

0100

0101

BAD

0110

0111

1000

12



MODE2, MODE3
Pantech BBM
Qualcomm MSM6100
MSM6100 EFS
Reserved Block Area
Samsung GBBM
SAM GBBM DWSwap
Samsung WinCE
Skip Bad Blocks
Thales Navigation
Datalight Flash FX
Unistore V1.8

_

13



User S/IW NAND Power PC

access must
be the same

Operating :
System ) E{ %ﬂ Algorithm

NOR NAND NAND

Cell Phone Programmer

14



have been removed to protect the
“Innocent”.

15



adapters and algorithm for
programming equipment.

Receive adapter and algorithm.

Receive binary image from
design team.

Pilot run to validate set-up.

Ready for full-rate production.

Day 0

Day 14

Day 15

Day 16
Day 17

16



SULIMIT

e Data I/O informs manager that NAND
requires bad-block scheme. Asks for
contact from design team.

e Manager contacts design team and
asks them to contact Data 1/O.

e Design team doesn’t understand why
they have to contact Data I/O. No
action for a week.

e Data I/O sends detailed explanation to
design lead.

Day 1

Day 2

Day 9

Day 10

17



SULIMIT

« Data I/O contacts file system vendor; Day 14
explains problem.

» File system vendor requires NDA; Day 19
executes NDA.

e Data I/O interviews file system
vendor; documents bad-block Day 22
scheme requirements.

e Data I/O writes code for bad-block
scheme and sends beta to design
lead.

Day 27

18



SULIMIT

help.

e File system vendor informs design team Day 33
of change in driver; updates bad-block
scheme document.

 Data I/O modifies scheme and sends Day 35
new algorithm to design team.

e Design team tests algorithm; phone Day 37
boots OK! Design team informs
production manager.

19



summ

i

Receives binary image from design team.
Pilot run to validate set-up.
Pilot run fails due to checksum problem.

Data I/O helps to troubleshoot problem; ECC
data is added to image. Manufacturing
updates process documentation.

Now pilot run is successful!
Ready for full-rate production.

Day 40

Day 42
Day 43

Day 45

Day 46
Day 47

20



manufacturing team realized that, wi
NAND devices, the programming algorithm
must comprehend more than just the device
characteristics; it also needs to “know” how
the NAND device is accessed in the
application.

21




Check device

type

Do you have
bad block
info?

Order adapter
and algorithm

Contact S'W
engineering; get
bad-block

scheme
information

Create
programming job

S/W engineering
involved to
validate new bad-
block scheme

1

Yes
: v
Submit bad- Programming
Order adapter > block schem_e to already use No_p vendor develops
programming scheme? new bad-block
vendor ) scheme
«—Yes
4
Contact other Create job;
engineering program first
resources (HW, +——» article; send first
semiconductor article to
vendor, etc.) engineering. Typlcal NAN D prOCGSS
Programming
vendor works ~_~Does product Create |
with engineering «No programming job A DR
to resolve issues

Help from
Semiconductor
FAEs

—




If you create a bad-block scheme that requires several good blocks in
certain area, the job yield will decrease.

Is one bit error during verify a failure, or does your application allow
this? Define this before pilot run.

Erase NAND; don’t blank check. This is much faster (but be sure to
use bad-block scheme during erase).

Make sure bad-block scheme documentation is complete:
e Mapping tables, partition information, dynamic fields, etc.?
 Document all the parameters for manufacturing!

23



EFS: Device Start Block This is the block number to place the File System on the device.

EFS: Boot/Code Partition Size This variable defines the size of the Boot/Code (first) partition size in
blocks.

Required good block area: Start block = “0” This will require the entered block to be a valid block

Required good block area: Number of blocks = “0” This will be the total number of blocks required to
be valid after the start block.

24



Device Start Block This is the block number to place the File System on the device.

Boot/Code Partition Size This variable defines the size of the Boot/Code (first) partition size in blocks.

Bad Block Device Start Block
Padding
File System
Boot/Code Reliance
+——Boot/Code Size —~|

Image Start Block



suMMIT

Spare Area: ECC

EFS: Image Start Block 1023

EFS: Device Start Block 1023
EFS: Boot/Code Partition Size 950

Required good block area start
block: 10

Number of blocks 1

26



suMMIT

27



Data 1/O algorithms

Can be used with input
and output text files to
simulate effects of bad
blocks during programming
of image file

Your code is integrated
into algorithm and tested
by Data 1/O.

28



= Use Data I/0O’s SDK to validate bad-block
scheme during design process

» Create bad-block scheme document as part of
design process

» Document dynamic fields for each model as part
of version control documentation

29



= Two Technologies Compared: NOR vs. NAND (M-
Systems)

= Programming NAND Devices (Data I/O Corporation)

30



suMMIT

http://www.dataio.com/NAND/default.asp o




suMMIT

Chief Technologist
Data I/O Corporation
425-867-6246
hirschk@dataio.com
www.dataio.com

32



