
1

High-Volume Programming of
NAND Flash

Kelly Hirsch
Chief Technologist

Data I/O Corporation

2

Programming NAND

 What is Programming?

 Why NAND?

 Programming and Time-to-Market

 Two stories---NOR and NAND

 Avoiding Pitfalls in Programming NAND

 Further Information

3

What is programming?

 “Programming” a device is the process of writing
content to the non-volatile memory
• Flash (NAND and NOR)
• Flash cards (MMC, SD)
• Flash based microcontrollers
• Logic (FPGAs, CPLDs, etc.)

 Programming methods:
• In-System Programming (ISP)
• In socket

– Manual
– Automated

– Off-line
– On-line

4

Typical Programming Process

 Insertion test
 ID Check
 Blank check (erase if not blank)
 Write content (gang mode)
 Write dynamic data (serial number, etc.)
 Verify content against original image
 Apply sector protection (if any)

5

Image Creation Tool

6

FlashPAK

Engineering, R&D

Road Runner
Series

Just in time
Programming

PS Series

Off-line
Programming

Image Writer

In-System
Programming

Desktop
Automated

Programming

FLX500

Programming Methods

7

Why do I care about programming?

 Time from design to production is critical for
short “life time” products:
• 1 month delay = 15% of potential revenue

• 3 month delay = 50% of potential revenue

 Sub-standard programming methods cost
semiconductor companies millions of dollars per
line (due to RMAs)

8

Why use NAND (vs. NOR)?

 NAND is less expensive than NOR

 NAND can program faster than NOR

 NAND has more endurance than NOR

 MLC NAND is available in large densities

9

Cell Phone Internal Memory Forecast

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2005 2006 2007 2008 2009 2010

P
e
rc

e
n

t
o

f
c
e
ll
 p

h
o

n
e
s

Internal Storage

Work Storage

Work Memory

Internal Storage = NAND (only) shadowed into LP DRAM

Webfeet Research
Sept. 2005

10

So what’s wrong with NAND?
 NAND has to be “shadowed” into volatile memory (pSRAM,

LPDRAM, etc.) before you can use it in an eXecute-in-Place (XiP)
application.

 NAND can have defective memory cells; typically NAND is delivered
from the factory with entire blocks of memory marked as “bad”.

 You will permanently damage a NAND device if you erase the entire
device.

 Writing and erasing NAND can cause a block to go bad at any time;
statistically significant at over 1000 cycles; ECC required.

 MLC can have more “bit-flips” than SLC; more ECC bits required.

 Programming NAND flash is much more complicated!

11

What’s needed to program NAND?
 A Bad Block Scheme

• to identify defective blocks of memory and know what to
do when they are found.

 Error Detection/Correction Code (EDC, ECC)
• to verify the data each time you read it, detect corrupted

bits and recover the original data.

 Wear leveling
• where frequent read/writes are required, a program is

used to keep track of the used locations and move this
activity around to different physical locations.

 Garbage collection
• where previous versions of data (that have been updated

and placed somewhere else) are erased so that a
complete erase block is available to the system for more
storage.









12

Bad-block Scheme Example

 BAD

0001
0010
0011
0100
0101
0110
0111
1000

Data NAND

13

But there are many schemes…

Logical Block Skip
4 Block Skip
File System Map
GSL Skip
MODE2, MODE3
Pantech BBM
Qualcomm MSM6100
MSM6100 EFS
Reserved Block Area
Samsung GBBM
SAM GBBM DWSwap
Samsung WinCE
Skip Bad Blocks
Thales Navigation
Datalight Flash FX
Unistore V1.8

Why?

14

Matching the Application

ProgrammerCell Phone

Power PC

Algorithm

NAND

User S/W

Operating

System

NOR NAND

NAND

access must

be the same

15

Two stories on time-to-market

The following stories are true---names
have been removed to protect the
“innocent”.

16

First…programming NOR

NOR Process
• Manufacturing manager orders

adapters and algorithm for
programming equipment.

• Receive adapter and algorithm.

• Receive binary image from
design team.

• Pilot run to validate set-up.

• Ready for full-rate production.

Elapsed Time

Day 0

Day 15

Day 16

Day 17

Day 14

17

Second…programming NAND

NAND Process
• Manufacturing manager orders adapters

and algorithm for programming
equipment.

• Data I/O informs manager that NAND
requires bad-block scheme. Asks for
contact from design team.

• Manager contacts design team and
asks them to contact Data I/O.

• Design team doesn’t understand why
they have to contact Data I/O. No
action for a week.

• Data I/O sends detailed explanation to
design lead.

Elapsed Time

Day 0

Day 2

Day 9

Day 10

Day 1

18

Programming NAND (cont.)

NAND Process (cont.)
• Design lead informs Data I/O that

file-system is supplied by third party;
sends contact information.

• Data I/O contacts file system vendor;
explains problem.

• File system vendor requires NDA;
executes NDA.

• Data I/O interviews file system
vendor; documents bad-block
scheme requirements.

• Data I/O writes code for bad-block
scheme and sends beta to design
lead.

Elapsed Time

Day 11

Day 19

Day 22

Day 27

Day 14

19

Programming NAND (cont.)

NAND Process (cont.)
• Design team tests algorithm but phone

won’t boot. Begin troubleshooting.
• Design team asks file system vendor for

help.
• File system vendor informs design team

of change in driver; updates bad-block
scheme document.

• Data I/O modifies scheme and sends
new algorithm to design team.

• Design team tests algorithm; phone
boots OK! Design team informs
production manager.

Elapsed Time
Day 29

Day 33

Day 35

Day 37

Day 31

20

Programming NAND (cont.)

NAND Process (cont.)
• Production manager receives adapter and

validated algorithm from Data I/O.
• Receives binary image from design team.
• Pilot run to validate set-up.
• Pilot run fails due to checksum problem.
• Data I/O helps to troubleshoot problem; ECC

data is added to image. Manufacturing
updates process documentation.

• Now pilot run is successful!
• Ready for full-rate production.

Elapsed Time

Day 39

Day 42
Day 43

Day 40

Day 45

Day 46
Day 47

21

What went wrong?

Neither the design team nor the
manufacturing team realized that, with
NAND devices, the programming algorithm
must comprehend more than just the device
characteristics; it also needs to “know” how
the NAND device is accessed in the
application.

Programming NAND vs. NOR
Check device

type
Is NAND?

Order adapter

and algorithm
No

Yes

Create

programming job
Process parts Done

Typical NOR process

Do you have

bad block

info?

Yes

Create job;

program first

article; send first

article to

engineering.

Does product

work?

Create

programming job
Process parts Done

No

Contact S/W

engineering; get

bad-block

scheme

information

Does vendor

already use

scheme?

 Submit bad-

block scheme to

programming

vendor

No

Yes

Programming

vendor develops

new bad-block

scheme

No

Programming

vendor works

with engineering

to resolve issues

Typical NAND process

Help from

Semiconductor

FAEs

Yes

Contact other

engineering

resources (H/W,

semiconductor

vendor, etc.)

Order adapter

S/W engineering

involved to

validate new bad-

block scheme

23

Avoid Common Pitfalls

 If you use ECC (in the spare area), the checksum for the image will
change. Provide manufacturing with the right checksum in the
“version control documentation”.

 If you create a bad-block scheme that requires several good blocks in
certain area, the job yield will decrease.

 Is one bit error during verify a failure, or does your application allow
this? Define this before pilot run.

 Erase NAND; don’t blank check. This is much faster (but be sure to
use bad-block scheme during erase).

 Make sure bad-block scheme documentation is complete:
• Mapping tables, partition information, dynamic fields, etc.?
• Document all the parameters for manufacturing!

24

Bad Block Handling Type = “Qualcomm MSM6100 EFS”
Spare Area = “Enabled” if the image contains the spare area data and that data should be programmed
into the device. “Disabled” if the image does not contain the spare area data and only the main array
should be programmed. “ECC” Calculates the ECC data and programs it into the spare area.

EFS: Image Start Block This is the beginning block of the File System. All blocks in the image after this
are considered to be in the File System and will be placed after the start block.

EFS: Device Start Block This is the block number to place the File System on the device.

EFS: Boot/Code Partition Size This variable defines the size of the Boot/Code (first) partition size in
blocks.

Required good block area: Start block = “0” This will require the entered block to be a valid block

Required good block area: Number of blocks = “0” This will be the total number of blocks required to
be valid after the start block.

Do you know all the parameters?

25

Bad Block Handling Type = “Datalight FlashFX Pro”
Spare Area = Always “Enabled”, the image contains spare area data and that data must be programmed
into the device. Format of the spare area is dependent upon the specific NAND configuration. “ECC”
Calculates the ECC data and programs it into the spare area.

Image Start Block This is the beginning block of the File System. All blocks in the image after this are
considered to be in the File System and will be placed after the start block.

Device Start Block This is the block number to place the File System on the device.

Boot/Code Partition Size This variable defines the size of the Boot/Code (first) partition size in blocks.

Do you know all the parameters?

26

Include bad-block parameters in
your Version Control Document.

Version Control Document
.
.
Bad Block Handling Type:
Qualcomm MSM6100 EFS

Spare Area: ECC

EFS: Image Start Block 1023

EFS: Device Start Block 1023

EFS: Boot/Code Partition Size 950

Required good block area start
block: 10

Number of blocks 1
.
.
.

27

Data I/O’s Questionnaire

28

SDK for NAND Bad Block Scheme
• Visual Studio application

for simulation of bad-block
handling methods

• Distributed with source
code which integrates into
Data I/O algorithms

• Can be used with input
and output text files to
simulate effects of bad
blocks during programming
of image file

• Your code is integrated
into algorithm and tested
by Data I/O.

29

Final Recommendations

 Ask semiconductor FAEs to bring in
programming solutions vendor

 Use Data I/O’s SDK to validate bad-block
scheme during design process

 Create bad-block scheme document as part of
design process

 Document dynamic fields for each model as part
of version control documentation

30

For further reading…

 Optimizing a Flash Media Manager for NAND Flash
Imaging (Datalight)

 Two Technologies Compared: NOR vs. NAND (M-
Systems)

 Programming NAND Devices (Data I/O Corporation)

31

Data I/O’s “NAND Portal”

http://www.dataio.com/NAND/default.asp

32

Thank you!

Kelly Hirsch
Chief Technologist

Data I/O Corporation
425-867-6246

hirschk@dataio.com
www.dataio.com

