

Solid State Technology – Where Does it Fit for Customer Applications?

Rob Peglar Vice President, Technology Xiotech

San José, CA USA August 2006

A Blast from the Past – Happy 25th! August 12th, 1981

IBM Model 5150 Specifications

Processor	Intel 8088
Speed	4.77 MHz
RAM	16KB
Storage	Cassette Tape, optionally 5.25" 160KB floppy drives
Expansion	5 expansion slots
Bus	Industry Standard Architecture (ISA)
Video	Initially CGA (320x200x16 color, 640x200x2 color) or monochrome (80x25 text only))
I/O	Parallel, Serial
OS San José, CA USA	Microsoft Basic 1 (ROM)
Killer App	VisiCalc

- Today, we have CPUs which are 1,000x
- Today, we have RAM which is 1,000,000x
- Today, we have storage which is 3,000,000x
- So what's the problem?

The Problem WAS – AND IS – I/O

In a perfect world, I/O would not be necessary

- 1st level store would hold everything, forever
- Access Density IOPS/GB
 - Getting WORSE over time
- Example:
 - IBM Model 5150 625 KB/s, 8.33 ms, 3,600 RPM
 IOPS/GB = 20 / .001 = 20,000
 - Today 85,000 KB/s, 2.9 ms, 15,000 RPM
 - IOPS/GB = 200 / 300 = 0.667

The Advent of Solid State Disk

- Technology Choices Boiled Down to Two
 NAND Flash
 - Slow, cheap, dense, non-volatile
 - JFFS2
 - ONFI Open NAND Flash Interface finally
- DRAM
 - Very fast, dense, not cheap, volatile
 - No internal file system
 - Is it cache, or is it disk?
- NOR Flash odd man out

Flash as Magnetic Disk Replacement

Write cycles, cost/GB, media lifetime, TCO

DRAM as Cache Replacement

Cost/GB, TCO, expandability/flexibility

Application Workloads

Transactional (random) versus Batch (sequential)
Database versus Files

• Structured versus Unstructured

Application Requirements

Applications don't want disks

They want space (more is better)

Applications don't want IOPS

They want time (less is better)

Applications do I/O because they have to

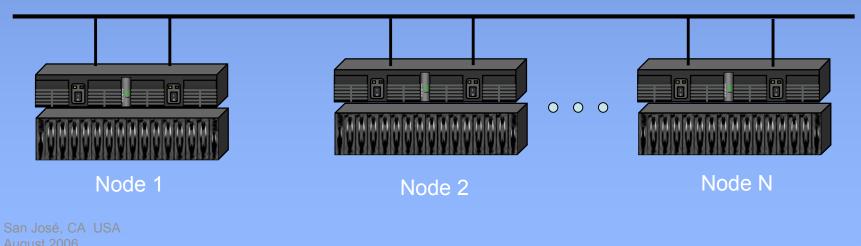
But they don't really want to

The problem is not applications, it's application programmers

Real-World Application Workloads

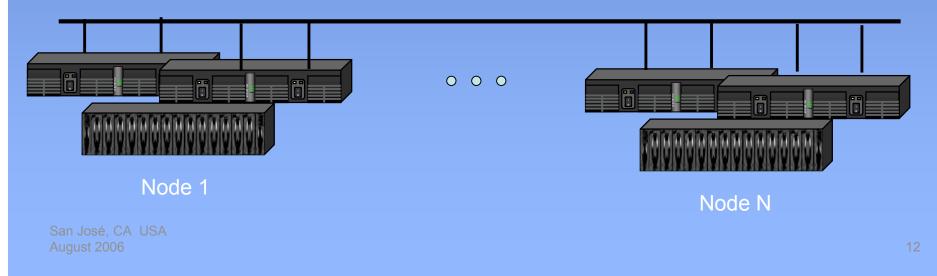
Unstructured data

- Unstructured data is a poor fit for SSD
- Exception small, non-growing tagged files
- OS images boot-from-flash, page-to-DRAM
- Structured data
 - Structured data is an excellent fit for SSD
 - Exception large, growing table spaces
- Databases have key elements
 - Commit files logs, redo, undo

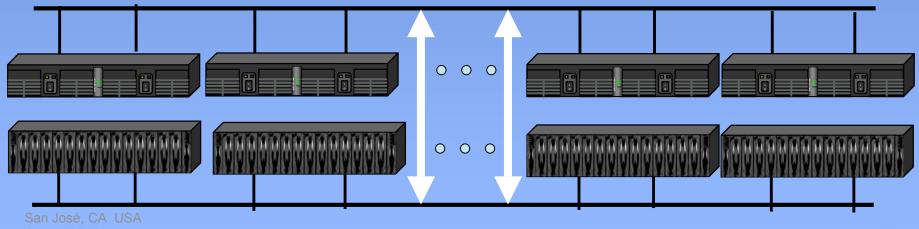

How should I Design my SAN for SSD?

- SSD introduces a new complexity into SAN
 - Or does it?
- SSD should be treated <u>exactly</u> like magnetic
- External SSD == bad
 - Captive to server, doesn't scale
- SAN-based SSD == good
 - Not captive to server, scales
 - Add more SSD drives as demand grows, online
 - Virtualized & Clustered

Three Types of Clustered Storage


- Type 1 Single-access captive storage
 Controller node integrated with captive disks
 Clustering is via multiple instances of nodes
 Flaw Inter-node latency to reach disks
 - Flaw Sparing across nodes SPOF controller

Three Types of Clustered Storage


- Type 2 Dual-access captive storage
 - Pairs of controller nodes integrated with captive disks
- Clustering is via multiple instances of dual nodes
 - Flaw Inter-node latency to reach disks
 - Flaw Sparing across nodes

Three Types of Clustered Storage

- Type 3 Multi-access non-captive storage N controller nodes networked with N storage nodes
 - Clustering is optimal controllers & storage
 - Any-to-any communication to disks
 - Sparing at the storage node level

THANK YOU

Q&A

San José, CA USA August 2006