
Databases for Flash-based Systems

Dr Nigel Day, Technical Director
nigel.day@polyhedra.com

2

Enea – embedded for leaders

 The world’s leading supplier of real-time operating systems,
middleware, development tools, database technology
and professional services for high-availability distributed
multiprocessing applications such as telecommunications
infrastructure, mobile devices, medical instrumentation, and
automobile control/infotainment.

 Enea’s flagship operating system, OSE, is deployed in
approximately half of the world’s 3G mobile phones and base
stations.

 Global software company with a strong professional services
offering.

 We provide customer value through complete embedded
solutions, reduced development time and cost.

 ~500 employees; revenue SEK ~700 M (approximately $100M)

3

Enea Market Offering

Software - NASP (Network Architecture Services Platform)
- Element™ Middleware Platform
- OSE™, Real Time Operating System
- Optima™ Eclipse-based Tools
- Polyhedra™, In Memory Database

Consulting services - Application development, systems integration, testing
- Hardware and software design
- Training
- 300 professional consultants

Third party products - Best of breed tools, network protocols and applications

4

Enea Polyhedra™

 Family of relational database products for embedded
use
• Polyhedra and Polyhedra64 – in memory for speed

– Hot standby configurations for high availability
• Polyhedra FlashLite – data in flash for low RAM footprint

 Polyhedra project started in 1991
 First released in 1993, now on release 6.3 (Q2 2006)

• Polyhedra FlashLite first released March 2006

 Polyhedra company bought by Enea AB in 2001
• Product still developed and supported by original team

5

Patterns of data use in embedded
systems

 Structures are relatively static, but should be
dynamically changeable without data loss

 Changes can be frequent, but rarely involve many
records

 Queries can be very frequent (and/or need fast
response)
• Notification technologies can reduce the need for 'polling'

 Database structure tuned for known queries and
operations
• Retrieve (part of) a record via an indexed field
• Scan a table to retrieve (parts of) records matching specified

criteria
• Update a set of records (perhaps in different tables) where

the indexes/primary keys are known

6

What is a database

 A set of structured data and access mechanisms
 Logically separated from the applications that use it

• Different apps can share data 'safely'
• Structure on disk/file not known/accessible to user code

 Best known database model: Relational
• Data is held in a set of tables; queries can span tables
• Fully transactional
• Industry standard access language (SQL), APIs (ODBC,

JDBC)
 Note for purists:

• 'Database' refers to the information; Database Management
System or DBMS is the software used to store and access it

7

Databases versus data stores

 Databases are logically
separate
• Flexible: can add tables,

columns, etc without
invalidating running
applications

 Usually, client-server
architecture
• Data better protected
• Overall app can be split into

smaller, simpler applets
• Cross machine connections

possible
 Standard APIs

• Skills and code more
reusable

 Data store keeps information
in native data structures
• Faster
• Less flexible
• Less portable

 Usually, data kept in same
address space
• Vulnerable to application

errors!

 Non-standard APIs
• Makes learning, application

portability more difficult

8

Why use a database?

 To store information…
• … that needs to be preserved

– Static configuration information
– Includes user data, such as phonebooks, ring tones, high

scores, play lists, account information, …
– Event logs

• … that needs to be shared
– Including transient data that does not need to be preserved

– Status information
– Dynamic configuration data

• … that must be controlled
– Not all parts of the system needs access to all the data
– Changes must obey rules, be transactional

• … whose structure may change over time

How DBMS's use Flash

Concentrating on Polyhedra and
Polyhedra FlashLite

10

Typical disk use by standard
DBMS

 Altering the disk to record what is changing is easy –
recovering after a failure is less so
• If a transaction fails, must be able to patch back to where we

were before: need to store rollback info
• If the system fails mid-transaction, must be able to patch

back to a consistent state
• If rollback info might be lost, we need separate mechanism

to patch system back after system failure
 Belt-and-braces approach:

• Write rollback info in separate file, flushing the file before
doing the alteration to the 'real' data

• Write journalling info to a separate file, flushing at the end of
each transaction; can be used with a backup copy of
database to rebuild a corrupted database.

11

Polyhedra in-memory DBMS

 Main copy of the data is kept in RAM
 Snapshots on demand, to write a copy of the

database to file
• Open a temporary file for writing
• Write the schema information and table contents
• Close file, rename old file to one side, rename temporary file

 Journal records are appended to the snapshot
• Done post-transactionally, asynchronously for speed
• Sequential write, then synch/flush

 On startup, snapshot is read, then all journal records
• File marker positioned at end of snapshot or last valid

journal record, ready for next transaction.
 Very simple pattern of use!

12

Database

filename.datfilename.bak filename.dat

Update to
Persistent Data

Update to
Transient Data

Update to
Persistent Data

Update to
Persistent Data

Update to
Persistent Data

Update to
Persistent Data

Update to
Persistent Data

Update to
Persistent Data

Save

API

User
Application

File use by Polyhedra in-
memory DBMS

Lo
ad

 F
ile

Update to
Persistent

Data
Queries

13

Polyhedra FlashLite

 Aims
• Polyhedra functionality, but reduced code and RAM footprint

– Relational DBMS, SQL, ODBC, transactional
• Optimised for Flash rather than Hard Disk

 Assumptions on Flash
• Reading is fast, but data not necessarily directly addressable

– (treat as) page-based, with all pages approximately the same
cost of access

• Writing can be slow, and is to be minimised
• A flash manager is available, to handle remapping of bad

blocks, wear levelling, erasure, etc.
– Alternatively, interface routines can be provided by the

customer
– Isolates us from the low-level access issues!

14

Polyhedra FlashLite 'file' usage
ro

ot
 p

ag
e

1
ro

ot
 p

ag
e

1

m
ap

1
pa

ge
m

ap
1

pa
ge

m
ap

2
pa

ge
m

ap
2

pa
ge

da
ta

 p
ag

e
da

ta
 p

ag
e

two sets of logical-to-physical maptwo sets of logical-to-physical map
blocks, used alternatelyblocks, used alternately

root page, with bitmap indicating which copy of eachroot page, with bitmap indicating which copy of each
map block is currentmap block is current

data blocks in usedata blocks in use

Layout in file (illustrative)Layout in file (illustrative)

Logical viewLogical view

Physical viewPhysical view

ro
ot

 p
ag

e
2

ro
ot

 p
ag

e
2

15

Polyhedra FlashLite's use of Flash

 Treats a Flash file as a series of pages, with two
copies of logical to physical map pages and 2 copies
of a root block
• Root blocks indicates which copies of map pages are current

 A transaction does not overwrite data pages in use
• uses unused pages and then adjusts relevant logical to

physical map pages and root block
– Updated map pages are written to their spare copies, and new

root block written to its spare copy
– PolyLite can revert to older state if system crashes mid-

transaction or if a transaction fails
– Rollback is cheap!

 Flash file can be used via the file system
• … or by customer-supplied interface functions

16

Use of Flash when querying

 Pages are read into cache as needed
• Indexing reduces the number of pages that need

to be read
• Records for a table are localised, so table scans

are efficient

 No page writes!
• Polyhedra does not use temporary tables on

backing store to keep the results of a query

17

Use of Flash when writing

 When records are being updated in a transaction:
• The relevant data block(s) will be got into the cache, and

modified
• The cached copy of the relevant map block(s) are updated
• The bitmap in the cached copy of the current root block is

updated
• The data block(s) are written to spare locations
• The map block(s) are written to their spare locations
• The 'file' is synced, to ensure above writes are done before

next ones
• The root block is written to the spare location, and flushed

– Once completed OK, the transaction is 'durable'

18

Summary

 Database management
systems are emerging that
are designed with the
capabilities of Flash storage
in mind

 Their design seeks to
minimise the number of
writes while maintaining
transactional safeness

 Simple pattern of use
imposes little strain on wear-
levelling software.

 For more information on
the Polyhedra DBMS
family, including Polyhedra
FlashLite, visit
www.polyhedra.com or
www.enea.com/polyhedra

