
Databases for Flash-based Systems

Dr Nigel Day, Technical Director
nigel.day@polyhedra.com



2

Enea – embedded for leaders

 The world’s leading supplier of real-time operating systems,
middleware, development tools, database technology
and professional services for high-availability distributed
multiprocessing applications such as telecommunications
infrastructure, mobile devices, medical instrumentation, and
automobile control/infotainment.

 Enea’s flagship operating system, OSE, is deployed in
approximately half of the world’s 3G mobile phones and base
stations.

 Global software company with a strong professional  services
offering.

 We provide customer value through complete embedded
solutions, reduced development time and cost.

 ~500 employees; revenue SEK ~700 M (approximately $100M)
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Enea Market Offering

Software - NASP (Network Architecture Services Platform)
- Element™ Middleware Platform
- OSE™, Real Time Operating System
- Optima™ Eclipse-based Tools
- Polyhedra™, In Memory Database

Consulting services - Application development, systems integration, testing
- Hardware and software design
- Training
- 300 professional consultants

Third party products - Best of breed tools, network protocols and applications
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Enea Polyhedra™

 Family of relational database products for embedded
use
• Polyhedra and Polyhedra64 – in memory for speed

– Hot standby configurations for high availability
• Polyhedra FlashLite – data in flash for low RAM footprint

 Polyhedra project started in 1991
 First released in 1993, now on release 6.3 (Q2 2006)

• Polyhedra FlashLite first released March 2006

 Polyhedra company bought by Enea AB in 2001
• Product still developed and supported by original team
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Patterns of data use in embedded
systems

 Structures are relatively static, but should be
dynamically changeable without data loss

 Changes can be frequent, but rarely involve many
records

 Queries can be very frequent (and/or need fast
response)
• Notification technologies can reduce the need for 'polling'

 Database structure tuned for known queries and
operations
• Retrieve (part of) a record via an indexed field
• Scan a table to retrieve (parts of) records matching specified

criteria
• Update a set of records (perhaps in different tables) where

the indexes/primary keys are known
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What is a database

 A set of structured data and access mechanisms
 Logically separated from the applications that use it

• Different apps can share data 'safely'
• Structure on disk/file not known/accessible to user code

 Best known database model: Relational
• Data is held in a set of tables; queries can span tables
• Fully transactional
• Industry standard access language (SQL), APIs (ODBC,

JDBC)
 Note for purists:

• 'Database' refers to the information; Database Management
System or DBMS is the software used to store and access it
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Databases versus data stores

 Databases are logically
separate
• Flexible: can add tables,

columns, etc without
invalidating running
applications

 Usually, client-server
architecture
• Data better protected
• Overall app can be split into

smaller, simpler applets
• Cross machine connections

possible
 Standard APIs

• Skills and code more
reusable

 Data store keeps information
in native data structures
• Faster
• Less flexible
• Less portable

 Usually, data kept in same
address space
• Vulnerable to application

errors!

 Non-standard APIs
• Makes learning, application

portability more difficult
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Why use a database?

 To store information…
• … that needs to be preserved

– Static configuration information
– Includes user data, such as phonebooks, ring tones, high

scores, play lists, account information, …
– Event logs

• … that needs to be shared
– Including transient data that does not need to be preserved

– Status information
– Dynamic configuration data

• … that must be controlled
– Not all parts of the system needs access to all the data
– Changes must obey rules, be transactional

• … whose structure may change over time



How DBMS's use Flash

Concentrating on Polyhedra and
Polyhedra FlashLite
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Typical disk use by standard
DBMS

 Altering the disk to record what is changing is easy –
recovering after a failure is less so
• If a transaction fails, must be able to patch back to where we

were before: need to store rollback info
• If the system fails mid-transaction, must be able to patch

back to a consistent state
• If rollback info might be lost, we need separate mechanism

to patch system back after system failure
 Belt-and-braces approach:

• Write rollback info in separate file, flushing the file before
doing the alteration to the 'real' data

• Write journalling info to a separate file, flushing at the end of
each transaction; can be used with a backup copy of
database to rebuild a corrupted database.
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Polyhedra in-memory DBMS

 Main copy of the data is kept in RAM
 Snapshots on demand, to write a copy of the

database to file
• Open a temporary file for writing
• Write the schema information and table contents
• Close file, rename old file to one side, rename temporary file

 Journal records are appended to the snapshot
• Done post-transactionally, asynchronously for speed
• Sequential write, then synch/flush

 On startup, snapshot is read, then all journal records
• File marker positioned at end of snapshot or last valid

journal record, ready for next transaction.
 Very simple pattern of use!
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Database
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Polyhedra FlashLite

 Aims
• Polyhedra functionality, but reduced code and RAM footprint

– Relational DBMS, SQL, ODBC, transactional
• Optimised for Flash rather than Hard Disk

 Assumptions on Flash
• Reading is fast, but data not necessarily directly addressable

– (treat as) page-based, with all pages approximately the same
cost of access

• Writing can be slow, and is to be minimised
• A flash manager is available, to handle remapping of bad

blocks, wear levelling, erasure, etc.
– Alternatively, interface routines can be provided by the

customer
– Isolates us from the low-level access issues!
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Polyhedra FlashLite 'file' usage
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Polyhedra FlashLite's use of Flash

 Treats a Flash file as a series of pages, with two
copies of logical to physical map pages and 2 copies
of a root block
• Root blocks indicates which copies of map pages are current

 A transaction does not overwrite data pages in use
• uses unused pages and then adjusts relevant logical to

physical map pages and root block
– Updated map pages are written to their spare copies, and new

root block written to its spare copy
– PolyLite can revert to older state if system crashes mid-

transaction or if a transaction fails
– Rollback is cheap!

 Flash file can be used via the file system
• … or by customer-supplied interface functions
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Use of Flash when querying

 Pages are read into cache as needed
• Indexing reduces the number of pages that need

to be read
• Records for a table are localised, so table scans

are efficient

 No page writes!
• Polyhedra does not use temporary tables on

backing store to keep the results of a query
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Use of Flash when writing

 When records are being updated in a transaction:
• The relevant data block(s) will be got into the cache, and

modified
• The  cached copy of the relevant map block(s) are updated
• The bitmap in the cached copy of the current root block is

updated
• The data block(s) are written to spare locations
• The map block(s) are written to their spare locations
• The 'file' is synced, to ensure above writes are done before

next ones
• The root block is written to the spare location, and flushed

– Once completed OK, the transaction is 'durable'
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Summary

 Database management
systems are emerging that
are designed with the
capabilities of Flash storage
in mind

 Their design seeks to
minimise the number of
writes while maintaining
transactional safeness

 Simple pattern of use
imposes little strain on wear-
levelling software.

 For more information on
the Polyhedra DBMS
family, including Polyhedra
FlashLite, visit
www.polyhedra.com or
www.enea.com/polyhedra


