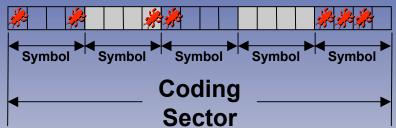


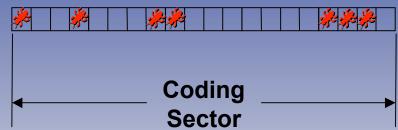
NAND Error Correction Code Choices

Pete Feeley
Strategic Marketing – NAND
Micron Technology, Inc



NAND Error Correction Choices

- Leading edge NAND requires multiple bit error correction
 - Hamming codes only correct single bit errors
 - Reed-Solomon
 - Binary BCH
- Metrics
 - Overhead requirements
 - Correction performance
- Reed-Solomon and binary BCH have different underlying structures: one is symbol-based and the other is binary


Comparing Symbol-Based to Flash Mem Synary Error Coding

Symbol-Based Code

- > Symbol length: m = 4 bits
- \triangleright Code length: n = 5 symbols
- Bit errors = 7
- Symbol errors = 4
- \triangleright Error correction: t = 4
- \rightarrow Max error pattern: t * m = 16 bits

Binary Code

- \triangleright Symbol length: m = 1 bit
- \triangleright Code length: n = 20 symbols
- \triangleright Bit errors = 7
- ➤ Symbol errors = 7
- \triangleright Error correction: t = 7
- \blacktriangleright Max error pattern: t * m = 7 bits

Memory Binary Error Coding

Common ECC Choices for MLC NAND

Reed-Solomon

- >Symbol length: m = 9 bits
- Code length: n = 470 symbols

(528 bytes)

- \triangleright Error correction: t = 4
- ➤ Redundancy¹

requirements: 2tm = 72 bits

Binary BCH

- \triangleright Symbol length: m = 1 bit
- **Code length:** n = 4224 symbols

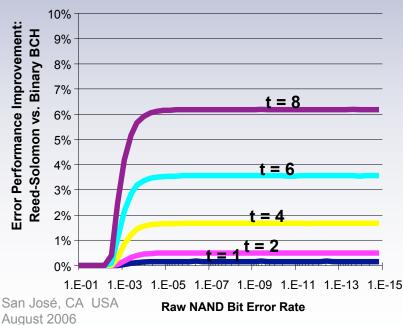
(528 bytes)

- \triangleright Error correction: t = 4
- **≻**Redundancy¹

requirements: 3t = 52 bits

Max error pattern: (*m = 4 bits

RS requires 39% more code redundancy for a given error correction.


RS can correct more bit errors but what does that mean for NAND Flash?

Note: (1) Redundancy is also referred as code overhead or parity and for NAND is typically stored in the spare area

Comparing Error Correction Performance

- Comparison of correction performance must be done in the context of the channel error conditions
- NAND error events are random and uncorrelated
- For NAND, Reed-Solomon corrects a few percent more error conditions than binary BCH
- A few percent change in error correction garners a generally insignificant improvement in the application bit error rate

Designed Error Correction Level	Typical Application Bit Error Rates ⁽¹⁾	
	Reed- Solomon	Binary BCH
t = 1	2.34e ⁻¹⁵	2.34e ⁻¹⁵
t = 2	7.69e ⁻¹⁵	7.73e ⁻¹⁵
t = 4	3.41e ⁻¹⁵	3.47e ⁻¹⁵
t = 6	3.59e ⁻¹⁴	3.72e ⁻¹⁴
t = 8	3.09e ⁻¹⁵	3.28e ⁻¹⁵

^{1.} Bit error rate is the ratio of error bits to the total number of bits read.

- Binary BCH is a better ECC solution for NAND than Reed-Solomon
 - 39% Reduction in code redundancy
 - Practically identical application-level performance

Thank You!

Contact Information
Peter Feeley
Micron Technology
pfeeley@micron.com
208-363-2693