

Expanding Flash Memory Capacity through Stacking Methods

Contact: Bert Haskell Director Marketing, CEBU Staktek, Inc. bhaskell@staktek.com 512-454-9531 x286

www.staktek.com

Staktek Confidential

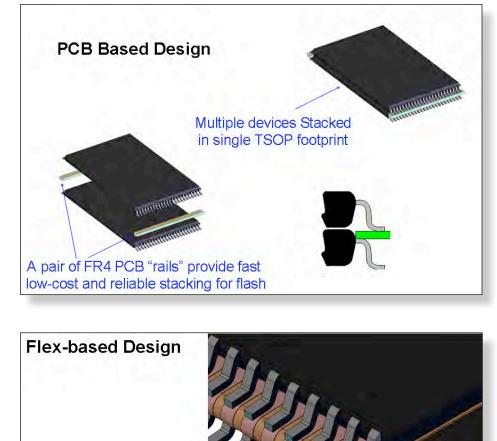
High-Density Flash Packaging

- Flash Stacking
- Flex Integrated Modules

Flash Stacking Benefits

<u>Benefits</u>

Highest Density NAND Solution


• Stacking multiple lower density devices in a single TSOP footprint

Component supply flexibility

 Supports commodity NAND devices from multiple vendors

Product Agility

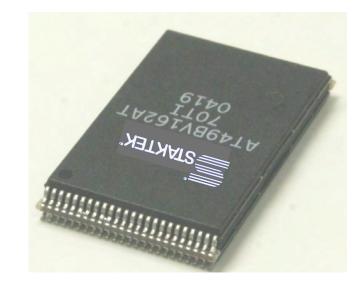
• Enables higher capacity SKUs with minimum design changes and manufacturing cycle time for UFD, MP3, Memory Card, etc...

www.staktek.com

Staktek

Adhesive-less flex

with plated traces


Supported trace design provides a thinner and more robust assembly

FlashStak[™] X-2

Doubles the NAND storage capacity

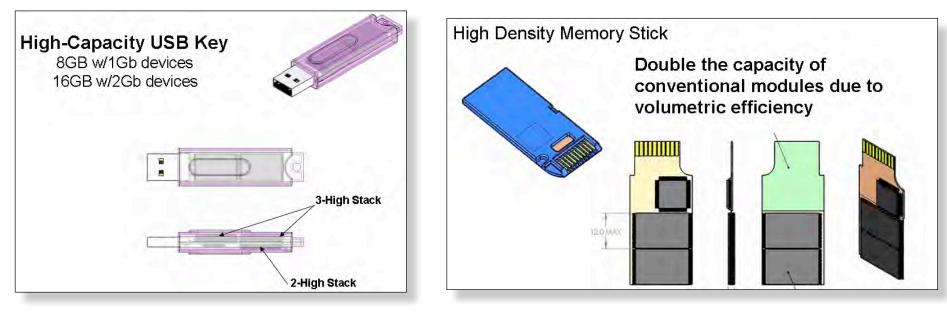
- Stacks two NAND TSOP devices
- Mechanically Rugged and Reliable like a single TSOP
 - Extensive stack qualification and testing
 - Stack fits into a standard TSOP footprint
- Flexible and Just-in-Time Component Support
 - Supports commodity 1CE and 2CE flash devices
 - 24 hour manufacturing cycle time (typical)
- Low Profile Stack
 - Virtually the same height as two TSOPs
- Proven and standard assembly process
 - Based on proven Value Stakpak® IP
 - 2GB products shipping since Q4'05

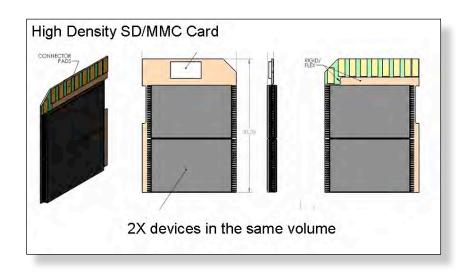
Double the Density of a Commodity Flash Device

FlashStak X-4

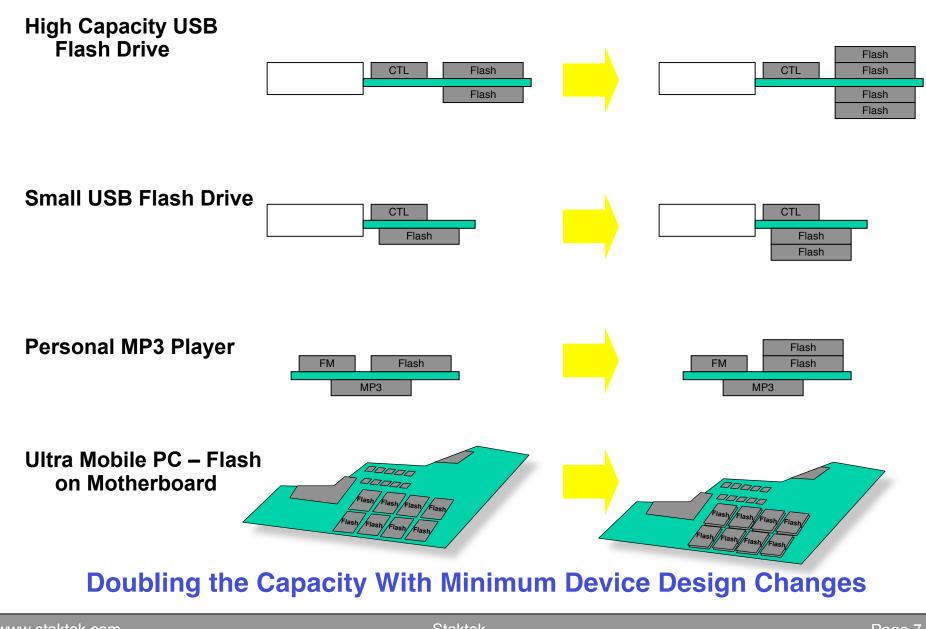
Quadruple the NAND storage capacity

- Supports up to 32Gb in a single stack with 4 x commodity 8Gb devices
- Supports up to 64Gb in a single stack with 4 x 16Gb devices
- Mechanically Rugged and Reliable like a single TSOP
 - Extensive stack qualification and testing
 - Stack fits into a standard TSOP footprint
- Flexible and Just-in-Time Component Support
 - Stacks up to 4 JEDEC standard TSOP devices (single or dual CE)
 - 24 hour manufacturing cycle time (typical)
- Low Profile Stack
 - 4.62mm MAX Height
- Proven and standard assembly process
 - Based on proven Value Stakpak® IP


Stacking dimensions*: L x W = 20.3mm x 12.9mm MAX 2-High = 2.34mm MAX Height 3-High= 3.48mm MAX Height 4-High= 4.62mm MAX Height


Quadruple the Density of a Commodity Flash Device

www.staktek.com

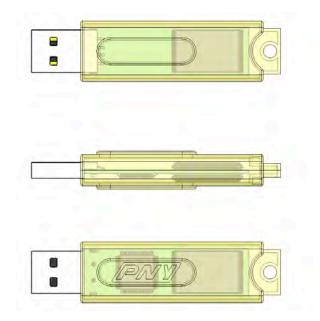

Flash Stacking Applications

- Small Form-Factor Memory products
- Portable electronic products requiring high capacity embedded Flash
 - MP3/Medial player
 - Digital still camera
 - Camera Phone
 - Ultra-Mobile PC w/integrated Flash drive

Flash Stacking can be enabled with minimal re-design

www.staktek.com

STAKTEK°

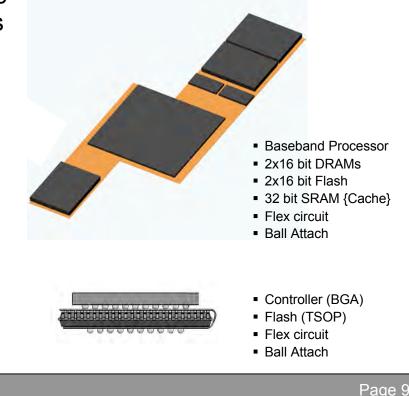

Staktek

Case Study: 4GB USB Flash Drive

- PNY's first commercial 4GB USB Flash drive using FlashStak X-2
- Product derived from existing 2GB drive using two single 8Gb TSOP devices
- Two 16Gb stacks were fitted in the existing housing with only minor modifications
- Stacks shipping in volume since Q405

Flex Integrated Module (FIM) Overview

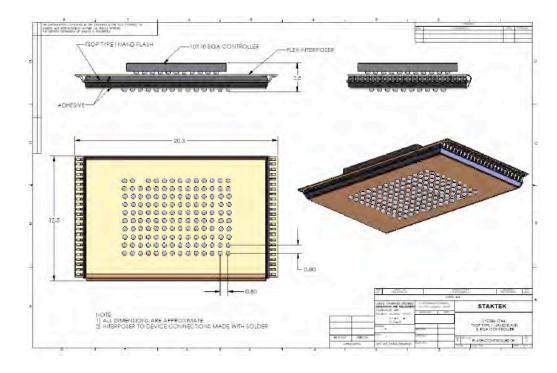
Description


- **System Stakpak**® is a Flex Integrated Module (FIM)
- Integration of heterogeneous ICs and packages within a folded flex module
- Enables complex or economical form-factor optimized sub-systems
- Leverages Staktek's extensive experience and IP with flex circuit assembly

Staktek

- Complementary to SiP and PoP packaging
- Supports sub 2mm low-profile applications

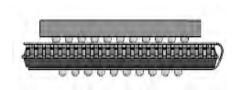
Benefits


- <u>Best-in-class</u> silicon selection
 - Optimal feature set for targeted application
- Increased design flexibility
 - Time to market
- Enhanced yield
 - Cost efficiency

System StakPak® Advantages

- Best-In-Class silicon selection
 - Integrate the devices YOU choose for optimal functionality/performance regardless of available packaging formats.
 - Use ANY off-the-shelf package formats (including bare die, CSP, SiP, PoP,TSOP,TBGA, etc.) without modification.
 - Integrate STANDARD packaged parts to shorten supply chain, minimize inventory, simplify forecasting and increase sourcing flexibility.
- Increased design flexibility
 - Exploit scalable flex circuit wiring resources for COMPLEX ROUTING requirements.
 - Integrate DISCRETE COMPONENTS within the module package.
- Enhanced yield
 - PRE-TEST individual packaged components.
 - Conduct ON-MODULE PRE-TEST of selected critical components.
 - REWORK defective components onmodule, post-functional test.

• FIM example – TSOP Flash + BGA Controller


Staktek

Summary

- FlashStak[™] Solution
 - Double and quadruple TSOP stacking solution for NAND Flash devices
 - Create products with higher memory capacity
 - Many products will require minimal redesign to accommodate stacked Flash
 - Based on reliable, proven designs and production processes
- System StakPak[®] Solution
 - Rapidly integrate Best-in-class flash and controller solutions into single low-profile package
 - Maintain design/supply-chain flexibility
 - High-yield solution

- Bert Haskell Director of Marketing, CEBU, Staktek, Inc.
- 20 years experience in the electronics industry
 - Manufacturing Engineer (Eastman Kodak)
 - R&D Management (MCC, SDC)
 - Product & Technology Marketing (AMD, Motion Computing, Staktek)
- Over 30 publications, 5 patents
- Author: "Portable Electronic Product Design and Development", McGraw-Hill 2004

- For reference only (not part of presentation)
 - FlashStak[™] 2-X: 2 Product SKUs
 - FlashStak™ Reliability Test Conditions

FlashStak[™] 2-X: 2 Product SKUs

2CE FlashStak

TOP MEW				
NC	1		48	NC
NC	2	-	47	NC
NC	3		46	NC
NC	4		45	NC
NC	5		44	I/O8
RY/BY2	6		43	1/07
RY/BY1	7		42	1/06
RE	8		41	I/O5
/CE1	9		40	NC
/CE2	10	Stacking dimonoiono:	39	PSL
NC	11	Stacking dimensions:	38	NC
VCC	12	Height = see below	37	VCC
VSS	13		36	VSS
NC	14		35	NC
NC	15		34	NC
CLE	16		33	NC
ALE	17		32	I/O4
WE	18		31	I/O3
WP	19		30	1/02
NC	20		29	I/O1
NC	21		28	NC
NC	22		27	NC
NC	23		26	NC
NC	24		25	NC

Vendor	Density	Single CE part#	Stack Height (mm)	Status
Hynix	4Gb	HY27UG084G2M-TXXX	2.21	Production-ready
TIYIII.	8Gb	HY27UH088G2M-TXXX	2.21	Production-ready
Micron	4Gb	MT29F4G08BABWP-XX	2.27	Production-ready
	256Mb	K9F5608D0D-PCB0	2.25	Production-ready
Samsung	4Gb	K9K4G08U0M-XXXX	2.25	Production-ready
	8Gb	K9K8G08U0M-XXXX	2.25	Production-ready
Toshiba	8Gb	TC58NVG3D4CTG00	2.45	In production
rosiliba	16Gb	TH58NVG4 D4CTG00	2.45	Production-ready

4CE FlashStak

		TOP VIEW		
NC	1		48	NC
NC	2	-	47	NC
NC	3		46	NC
RY/BY4	4		45	NC
RY/BY3	5		44	1/08
RY/BY2	6		43	1/07
RY/BY1	7		42	I/O6
RE	8		41	1/O/NC
/CE1	9	Stacking dimensions:	40	NC/NO
/CE2	10	L x W = 20.3mmx 12.9mm	39	PSL
NC	11	Height = See below	38	NC
VCC	12		37	VCC
VSS	13		36	VSS
/CE3	14		35	NC
/CE4	15		34	NC
CLE	16		33	NC
ALE	17		32	1/04
WE	18		31	I/O3
WP	19		30	1/02
NC	20		29	1/01
NC	21		28	NC
NC	22		27	NC
NC	23		26	NC
NC	24		25	NC

Vendor	Density	Dual CE Part#	Stack Height (mm)	Status
Micron	8Gb	MT29F8G08FABWP-XX	2.20	Sampling
Samsung	8Gb	K9W8G08U1M-XXXX	2.32	Sampling
Samsung	16Gb	K9WAG08U1M-XXXX	2.32	Sampling

Others currently being developed under NDA

Test	Reference	Conditions	
HAST	JESD22-A110	96 hours at 130C, 85% relative humidity using continuous bias.	
Temperature Cycle (Component Level)	JESD22-A104	Condition B, soak mode 1 for 1000 cycles at -55C to 125C	
Temperature Cycle (Module Level)	JESD22-A104	Condition J, soak mode 2 for 1000 cycles at 0C to 100C. 30 minute cycles with a temperature change rate of 10C/minute.	
Constant Acceleration	Mil-Std-883, 2001	Condition A: 5000g	
Vibration	JESD22-B103	Four sweeps of 20g peak sinusoidal vibration from 20 to 2000Hz in each of the three mutually perpendicular axes for a total of 12 sweeps	
Precondition	JESD22-A113	Use appropriate soak and reflow profile depending on device MSL	
Mechanical Shock	JESD22-B104	Condition B; 5 shocks at 1500g with 0.5ms durations in each of the three mutually perpendicular axes for a total of 30 pulses.	
Solderabililty	JESD22-B102 J-STD-002	Reflow test or Dip & Look method	
Solder Analysis	J-STD-001	Solder impurities per J-standard	
Lead Inspection	Internal	Verification of lead inspection equipment accuracy and repeatability for pitch and coplanarity using a known golden standard.	
Ionic Contamination	IPC-TM-650, Method 2.3.25	Liquid solution of 75% IPA and 25% DI water. Resistivity measured in Megaohm-cm and converted to equivalents of NaCI mg per square inch	