
Santa Clara, CA USA
August 2007 1

Flash File Systems

Technical issues and implementation details
for a family of successful embedded

flash file systems

Tim Stoutamore, Principal Engineer
Blunk Microsystems
stout@blunkmicro.com
408-323-1758

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 2

Blunk has been providing embedded flash
file system products since 2000. Our
products have been used in routers,
dashboard navigation systems, satellites,
set top boxes, and approximately 10% of
the cell phone market.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 3

Application Program Interface

Copyright 2007. Blunk Microsystems. All rights reserved.

<stdio.h>
fopen()
fclose()
fread()
fwrite()
fprintf()
remove()
rename()
rewind()
fseek()
fgetpos()
…

POSIX
open()
close()
read()
write()
mkdir()
lseek()
unlink()
chmod()
mkdir()
truncate()
...

Santa Clara, CA USA
August 2007 4

Simple NAND Interface

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 5

Driver Fragment

 /*---*/
 /* Send address as three separate bytes. */
 /*---*/

 raiseALE();
 NandPort = (ui8)(addr >> 9);
 NandPort = (ui8)(addr >> 17);
 NandPort = (ui8)(addr >> 25);
 lowerALE();

 /*---*/

 /* Send Erase Start command. */
 /*---*/
 raiseCLE();
 NandPort = 0xD0; /* erase start command */
 lowerCLE();

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 6

File System Requirements

Need program that will:
• Behave like a traditional file system
• Use flash memory as backing store
• Not violate the requirements/restrictions

of flash memory

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 7

Obstacles

Single Level Cell NOR

• Erase (up to 3 sec) sets every bit in a large (ex. 64KB) block
• Program allows you to clear individual bits
• "Wear Fatigue": must program/erase all blocks evenly

Multi Level Cell NOR

• Each cell holds one of four voltage levels and represents two bits.
Comparators map voltages to the bit assignments: 11, 10, 01, and 00.

• Can't rely on clearing a single bit without affecting adjacent bits.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 8

Obstacles Continued

Single Level Cell NAND

• Partial programming limit (typ. 3-4 per page)
• Bad Blocks: both as shipped and failures during operation
• Bit Errors: requires error detection and correction algorithms

Multi Level Cell NAND

• No partial programming allowed
• Pages must be written in numerical order
• More bit errors: requires correction for 4 or more bit errors per

512 bytes.
• Power-failure while programming a page can corrupt

previously written page.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 9Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 10

More Obstacles

Multi-Bit Cell NOR

• Single cell holds two bits: program each 'side' separately.
• Some MBC devices limit how many times a word can be partial

programmed: can't use bit map algorithms that may repeatedly update
the same word.

90nm NOR

• Divided into 1024 byte pages
• No limit on partial programming, but if you do any partial programming

you can only use half the page (512 bytes)

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 11

Implementation -
Control Information Storage

• When control information in flash is updated, it is written
to a new location and atomically marked as valid.

NOR SLC, M18: clear flag in bit array
NAND, NOR MLC: write control info with CRC

• Control information is given a unique "out-of-band" mark
on flash.

NOR SLC, M18: bit array in block header
NAND, NOR MLC: per-page 'type' tag

• Serial numbers are used to mark the most recent copy.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 12

Implementation -
Reclaiming 'dirty' flash

• Select set of blocks to be erased.
• Copy used data on block(s) to be erased to

another block

• Write a new copy of control information

• Erase the selected block(s)

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 13

Blunk's Power-Fail Guarantee

Directory structures, cIosed files, and files
open for reading are never at risk.

Data written prior to the previous sync() or
fflush() call is not at risk.

Only data written since the last synchronizing
operation can be lost.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 14

Implementation -
Power Fail Safety

No portion of flash memory that the most
recently saved control information 'thinks'
contains valid data can be modified. Before
a block is erased, its data is copied
elsewhere, and a new copy of control
information is written that has that block's
data marked as unused.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 15

Result

TargetFFS is widely used and relied upon to be
power-fail safe. We perform our own extensive
automated power-fail testing and customers routinely
subject TargetFFS to their own automated power-fail
tests. TargetFFS has beat out flash file system
products from Microsoft and other competitors, by
being the only system that passed the customer's
automated power-fail testing.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 16

Technique:
Background Garbage Collection

Recycle operations, which convert dirty
sectors to free sectors, may be performed in
the background by calling vclean() from the
idle task.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 17

Technique:
Reserved Memory

A configurable number of flash sectors can be
reserved, producing early volume full
indication. The file system immediately
exchanges reserved free sectors for dirty
application sectors. When combined with
background recycling, ensures a pool of free
sectors is always available, boosting file
system responsiveness for user interface
applications, even when the volume is
full or nearly full.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 18

Technique:
Erase Suspend Support

Erasing a block of NOR flash can take ~3 seconds and a
TargetFFS recycle operation may entail erasing multiple blocks.
This may cause application read requests to be locked out for
an unacceptable amount of time.

TargetFFS uses separate semaphores for read and write
access, and supports the NOR flash erase-suspend command.
An in progress block erase command will be suspended by a
read request from a higher priority task. The erase is
resumed after the read completes.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 19

Technique:
NVRAM for Super-Fast Mounts

Some embedded systems contain NVRAM. When
available, NVRAM can be used to eliminate the most time
consuming aspect of the mount operation: searching for
the most recent control information.

- void FsSaveMeta(ui32 vol_id, ui32 location); called after control write
- int FsReadMeta(ui32 vol_id, ui32 *location); called during mount

If FsReadMeta() returns zero, its output is used as the
location of the most recent copy of control information.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 20

Technique:
Seek Acceleration

int fseekmark(FILE *stream, int disable_update);

Bookmarks the current file offset. Closest
starting point is used when searching for a
new file offset.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 21

Technique:
Per-Task CWDs

The current working directory (CWD) is specified
by two 32-bit variables. The file system calls
application functions to save new CWD state
variables when 'chdir()' is executed. Another
application function is called to read the CWD
state variables when resolving relative paths.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 22

Technique:
Access Protections

Supports the “self”, “group”, and “other” file
access protections, allowing applications to
restrict some operations to privileged tasks.
TargetFFS calls FsGetId(), implemented by
the application, to get the running task’s user
and group IDs. These can be saved in a task-
specific RTOS register.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 23

Tools: Binary Image Tool

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 24

Tools: PC Shell Tool

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 25

Tools: Flash Test System

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 26

Tools: Driver Test Program
Writing page 514, verifying data pattern - finished
Writing page 771, verifying data pattern - finished

Writing page 1028, verifying data pattern - finished
Writing page 1285, verifying data pattern - finished

Writing page 1542, verifying data pattern - finished

Writing page 1799, verifying data pattern - finished
Writing page 2056, verifying data pattern - finished

Writing page 2313, verifying data pattern - finished
Writing page 2570, verifying data pattern - finished

Writing page 2827, verifying data pattern - finished
Writing page 3084, verifying data pattern - finished

Writing page 3341, verifying data pattern - finished
Writing page 3598, verifying data pattern - finished

TargetFFS includes a test program that thoroughly exercises the
layer below the file system. This verifies that the target is ready
to run the flash file system, and is useful for detecting both
hardware and driver software errors.

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 27

Tools: RAM Footprint Calculator

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 28

Full Spectrum of Embedded File Systems

Copyright 2007. Blunk Microsystems. All rights reserved.

Santa Clara, CA USA
August 2007 29

TargetNDM

Copyright 2007. Blunk Microsystems. All rights reserved.

Boot TargetFFS TargetFAT

Image Volume TargetFTL

TargetNDM

NAND Flash

Santa Clara, CA USA
August 2007 30

Take-Away

With the right software support,
implementing embedded flash file systems
on raw NAND and NOR chips is a low-cost,
reliable approach.

More information at: www.blunkmicro.com

Copyright 2007. Blunk Microsystems. All rights reserved.

