Technical issues and implementation details
for a family of successful embedded

flash file systems

Tim Stoutamore, Principal Engineer
Blunk Microsystems
stout@blunkmicro.com
408-323-1758

' U“I.

sSUMMIT

Blunk has been providing embedded flash
file system products since 2000. Our
products have been used in routers,
dashboard navigation systems, satellites,

set top boxes, and approximately 10% of

the cell phone market.

POSIX
open()
close()
read()
write()
mkdir()
Iseek()
unlink()
chmod()
mkdir()

truncate()

<stdio.h>
fopen()
fclose()
fread()
fwrite()
fprintf()

removel()

rename()

rewind()
fseek()

fgetpos()

SUMMIT

LSTE- oL

PORESET- >>—r T4LWTHZTZ

TALVKDSE0

BS_80-—1d

24

NANDCS-

- 1
GPL_AT- ¥y——ac3

ugh
TALVHDED

F v
SUMMIT

raiseALE () ;
NandPort (ui8) (addr >>
NandPort (ui8) (addr >>
NandPort (ui8) (addr >>
lowerALE () ;

raiseCLE () ;
NandPort = 0xDO; /* erase start command */
lowerCLE () ;

' U“I.

sSUMMIT

Need program that will:

e Behave like a traditional file system

e Use flash memory as backing store

e Not violate the requirements/restrictions
of flash memory

Single Level Cell NOR

» Erase (up to 3 sec) sets every bit in a large (ex. 64KB) block
e Program allows you to clear individual bits
o "Wear Fatigue": must program/erase all blocks evenly

Multi Level Cell NOR

e Each cell holds one of four voltage levels and represents two bits.
Comparators map voltages to the bit assignments: 11, 10, 01, and 00.

e Can't rely on clearing a single bit without affecting adjacent bits.

Single Level Cell NAND

» Partial programming limit (typ. 3-4 per page)
e Bad Blocks: both as shipped and failures during operation
e Bit Errors: requires error detection and correction algorithms

Multi Level Cell NAND

No partial programming allowed
Pages must be written in numerical order

More bit errors: requires correction for 4 or more bit errors per
512 bytes.

Power-failure while programming a page can corrupt
previously written page.

Table 2. Paired Page Address Information

Paired Page Address Paired Page Address
00h 04h
02h 08h
06h 0Ch
0Ah 10h
OEh 14h
12h 18h
16h 1Ch

GEh 74h 6Fh 75h
72h 78h 73h 79h
76h 7Ch 77h 7Dh
7Ah 7TEh 7Bh 7Fh

Note: When program operation is abnormally aborted (ex. power-down), not only page data under program but also paired
page data may be damaged(Table 2).

Santa Clara, CA USA
August 2007 Copyright 2007. Blunk Microsystems. All rights reserved. BLUNK

Multi-Bit Cell NOR

» Single cell holds two bits: program each 'side' separately.

 Some MBC devices limit how many times a word can be partial

programmed: can't use bit map algorithms that may repeatedly update
the same word.

90nm NOR

e Divided into 1024 byte pages

e No limit on partial programming, but if you do any partial programming
you can only use half the page (512 bytes)

* When control information in flash is updated, it is written
to a new location and atomically marked as valid.

NOR SLC, M18: clear flag in bit array
NAND, NOR MLC: write control info with CRC

e Control information is given a unique "out-of-band" mark
on flash.

NOR SLC, M18: bit array in block header
NAND, NOR MLC: per-page 'type' tag

o Serial numbers are used to mark the most recent copy.

' U“I.

sSUMMIT

e Select set of blocks to be erased.

e Copy used data on block(s) to be erased to
another block

e Write a new copy of control information

e Erase the selected block(s)

' U“I.

sSUMMIT

Directory structures, closed files, and files
open for reading are never at risk.

Data written prior to the previous sync() or
fflush() call is not at risk.

Only data written since the last synchronizing
operation can be lost.

' U“I.

sSUMMIT

No portion of flash memory that the most
recently saved control information 'thinks'
contains valid data can be modified. Before

a block is erased, its data is copied
elsewhere, and a new copy of control
information is written that has that block's
data marked as unused.

1' v“v;

SUMMIT

TargetFFS is widely used and relied upon to be
power-fail safe. We perform our own extensive

automated power-fail testing and customers routinely
subject TargetFFS to their own automated power-fail

tests. TargetFFS has beat out flash file system
products from Microsoft and other competitors, by
being the only system that passed the customer's
automated power-fail testing.

' U“I.

sSUMMIT

Recycle operations, which convert dirty
sectors to free sectors, may be performed in

the background by calling vclean() from the
idle task.

' U“I.

sSUMMIT

A configurable number of flash sectors can be
reserved, producing early volume full
indication. The file system immediately
exchanges reserved free sectors for dirty

application sectors. When combined with
background recycling, ensures a pool of free
sectors is always available, boosting file
system responsiveness for user interface
applications, even when the volume is

full or nearly full.

Erasing a block of NOR flash can take ~3 seconds and a
TargetFFS recycle operation may entail erasing multiple blocks.
This may cause application read requests to be locked out for
an unacceptable amount of time.

TargetFFS uses separate semaphores for read and write
access, and supports the NOR flash erase-suspend command.
An in progress block erase command will be suspended by a
read request from a higher priority task. The erase is

resumed after the read completes.

1' v“v;

SUMMIT

Some embedded systems contain NVRAM. When
available, NVRAM can be used to eliminate the most time
consuming aspect of the mount operation: searching for
the most recent control information.

- void FsSaveMeta(ui32 vol_id, ui32 location); called after control write
- int FsReadMeta(ui32 vol _id, ui32 *location); called during mount

If FsReadMeta() returns zero, its output is used as the
location of the most recent copy of control information.

' U“I.

sSUMMIT

int fseekmark(FILE *stream, int disable update);

Bookmarks the current file offset. Closest
starting point is used when searching for a
new file offset.

' U“I.

sSUMMIT

The current working directory (CWD) is specified
by two 32-bit variables. The file system calls
application functions to save new CWD state

variables when 'chdir()' is executed. Another
application function is called to read the CWD
state variables when resolving relative paths.

' U“I.

sSUMMIT

7 (13

Supports the “self’, “group”, and “other” file
access protections, allowing applications to
restrict some operations to privileged tasks.

TargetFFS calls FsGetld(), implemented by
the application, to get the running task’s user
and group IDs. These can be saved in a task-
specific RTOS register.

= testmultiple.tfd - TFSImage

File Help

O = & |jseke =||[32Blocks =||[BigErdian = || & |

— Reqion 1 — Region 2

Wolume to Create: [Tl =Rl Yolume bo Create: |NE|NE (left all 0=FF's) j

Beginning Black #: IEI Ending Block #: IEI 3: Beqinning Block #: |1 1] Ending Black #: |10

Diirectary: IE:\Testdir'\T FSlmageTest _I Directon: I

MOR Volume Type | MBC [Multiple Bit Cell = | NOR Volume Type |SBC (Single Bit Cel)]

FPage Size: I 512 - I FPage Size; I 512 vI
Compression Level; IEI _l; Campression Level: II:I _%

— Fegion 3 — Region 4
Yaolume to Create: ITargetFFS-NDH j Yolume bo Create: ITargetFFS-NDH j
Beginning Block f: ITI— Ending Block #: Iﬂ Beqinning Block &: |21— Ending Block #: Im
Diirectany: |E:\Testdir"~T FSlmageT esthD ataFiles _| Directany: |E:"~T estdirh TFSImageT esthT estFiles _|
MNOR Volume Type |SBC [Single BitCel] = | NOR Volume Type | M18 (30nm NOR flask) > |

FPage Size: I 512 - I Page Size: I 512 VI
Compression Level; ||:| _l; Campression Level: ||:| _l;

Ready I_ I_ l_

Santa Clara, CA USA
August 2007 Copyright 2007. Blunk Microsystems. All rights reserved. BLUNK

Tools: PC Shell Tool

[%] 2\ Blunkers' Tudor'PC Shell',shell_app.exe

for FFS

for FAT

for ZFS

choice: 1

volume first block <numbered from Bi:
volume la=st block: 63

volume name: flash

type = NOR_SBC
page size = H12
hlock =ize = G4KB
num blocks = 64
max bad bhlocks = @
bhyte order = BIG ENDIAM
UTF enabled
UFAT enabled
max file name length = 31
Uolume #1 of 1:
—* name = flash
—» type = FFS
—» First block A
—* la=st block 63
Iz this correct <y n>*: y
Enter full image path Cex: c:sha=z“foo.tfid:

Copyright 2007. Blunk Microsystems. All rights reserved. B LU N K

Writing page 514, verifying data pattern - finished
Writing page 771, verifying data pattern - finished
Writing page 1028, verifying data pattern - finished
Writing page 1285, verifying data pattern - finished
Writing page 1542, verifying data pattern - finished
Writing page 1799, verifying data pattern finished
Writing page 2056, verifying data pattern finished
Writing page 2313, verifying data pattern finished
Writing page 2570, verifying data pattern finished
Writing page 2827, verifying data pattern finished
Writing page 3084, verifying data pattern finished
Writing page 3341, verifying data pattern finished
Writing page 3598, verifying data pattern finished

TargetFFS includes a test program that thoroughly exercises the
layer below the file system. This verifies that the target is ready
to run the flash file system, and is useful for detecting both
hardware and driver software errors.

YO
F \
suMMIT

File System RAM Consumption Calculator

Help Instructions

Devicessystem Information:

4
4
4
4
4

Device Type - selects the type of device
Elock Size - device block size in kilobytes
Page Size - device page size in bytes
MNumber of Blocks - device number of blocks

Max, Bad Blocks - maximum number of bad
blocks on device (NAKD devices anly)
FILEMAME MAX - system wide maximum file
name length

FOPEN_MAX - system wide maximum number of
open files

olurme Tnformation.

ofurne Twpe - selecks type of volume (FFS, FAT,
ZFS), For SD/MMCSCF, only FAT is available

Folurme Nurmber of Blocks - number of blocks for
this volume

ofurne EOPEN MAX - volume magimum number
of open files (if O, defaults to system wide
value)

Ava, Murmber of Flez Dirs - Average number of
files/directories on volurne (FFS and ZF5 anly)

Ava, Allasoir Marme Length - dverage file length
in bytes on volume (FFS and ZFS only)

FTL Drlver ‘part_bytes” - FTL per black partition
bytes - the bigger this value, the faster the FTL
lookup is on a page miss(FAT with flash FTL
anlyl

FTL Drlver ‘map_size’ - FTL number of RAM page
mappings - if all pages are mapped in R&M, FTL
lookups are instantaneous (FAT with flash FTL
only) - setting this to 0 or bigger than volurme
pages maps all pages in RAM

Add Yolume

DevicefSystem Information

[MAND with MDW > |
[16
[512

Device Type:

Block Size(KB):

Page Size(B]:
Murmber of Blocks:

Mawx, Bad Blocks:

FILEMAME _MAX:

System FOPEN_M&X:

Compute RAM

T g
Total RAM.

Fy
SUMMIT

User Application

!

POSIX/ANSI C Stondard File System APT

! L]

I

I

Ta.;gnFFs -NOR | TargetFF$- NANDj |TargetZFs| (TargetRFS | [

TargetFAT

! I

I

TargetFTL-NDM | TargetFTL-NAND

To::gngTL-NORJ

!

mtm]

L

Row NOR
SLC/MLC/90nm

Rawy NAND
SLC/MLC

Row NOR
SLC/MLE/90nm

HD/CF/SD

Boot TargetFFS TargetFAT
Image Volume TargetFTL

TargetNDM
NAND Flash

' U“I.

sSUMMIT

With the right software support,
iImplementing embedded flash file systems
on raw NAND and NOR chips is a low-cost,

reliable approach.

More information at: www.blunkmicro.com

