

Flash Standards for Embedded Systems

Michael Abraham (mabraham@micron.com) Applications Engineering Manager Micron Technology, Inc.

Abstract

- OEMs are demanding that Flash-based interfaces migrate from a lawless "wild, wild West" frontier to one of defined standards to support interoperability among vendors and to simplify product design, test, and validation
- Take a look at the standards behind controller-less NAND Flash interfaces like the traditional, asynchronous NAND interface and the high-speed, synchronous NAND interface, as well as the standards for controller-based interfaces like BA NAND, e-MMC[™], and UFS

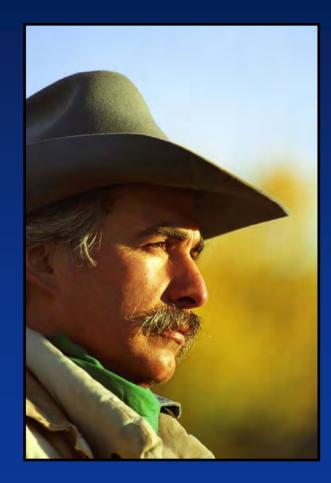
No standards: the "wild, wild, West"

Flash-based interface standards

The interface "round-up"

No Standards: The "Wild, Wild West"

- Standards are needed for device interoperability
- No standards lead to incompatibilities—the "wild, wild West," which was characterized by:
 - Gunfights and shootouts
 - Lawlessness
 - Robbers



A "Wild, Wild West" Example: NAND Flash

- The NAND Flash interface is a great example of how an interface with no standard became fragmented
 - Lack of consistent device and feature identification
 - Incompatible array architectures and addressing schemes
 - Different command sets
 - Inconsistent device behavior and status
- Result
 - Firmware bandages
 - Long product development/qual cycles
 - Lost revenue from longer time to market
 - The single source trap

No standards: the "wild, wild, West"

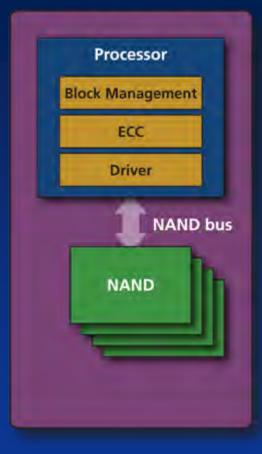
Flash-based interface standards

The interface "round-up"

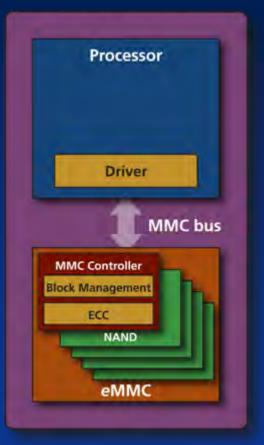
Flash-Based Embedded Interface Standards

Standards Organization	Embedded Interface
MMCA/JEDEC	e-MMC
JEDEC	UFS
	NAND
ONFI	Source-synchronous NAND
	BA NAND
SDA	eSD

Two Types of Interfaces


- Raw
 - The NAND memory is directly controlled by the host processor/controller
 - The <u>host processor</u> provides ECC, wear-leveling, and block management
 - The <u>host processor</u> deals with NAND architecture differences including page size, block size, # of planes, array performance
 - Lower cost per bit

- Managed
 - The NAND memory is buffered by an interface controller in the same package as the NAND
 - The <u>interface controller</u> provides ECC, wear-leveling, and block management
 - The <u>interface controller</u> hides the NAND architecture and provides fixed data sector sizes to the host
 - Lower up-front development cost


Raw vs. Managed Interface Examples

Direct NAND Interface

Raw interface

MMC Interface

Managed interface

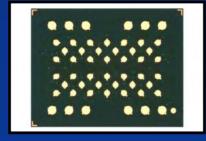
Santa Clara, CA USA August 2008

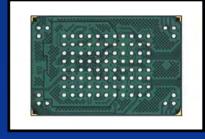
Standard Raw and Managed Interfaces

- Raw
 - Asynchronous NAND
 - Source-synchronous NAND

- Managed
 - BA NAND
 - e-MMC
 - eSD
 - UFS




Open NAND Flash Interface (ONFI)


- Asynchronous NAND Flash interface
 - First defined in ONFI 1.0
 - Up to 50 MB/s interface
 - The ONFI 2.0 standard is backward compatible to ONFI 1.0

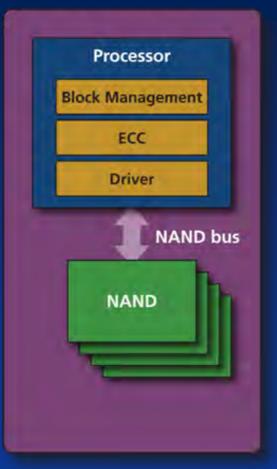
- Source-synchronous NAND Flash interface
 - Defined in ONFI 2.0
 - Up to 133 MB/s interface
 - Even faster interface speeds coming in ONFI 2.1

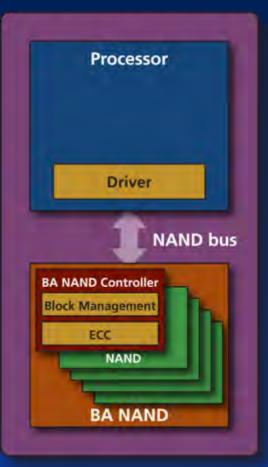
Santa Clara, CA USA August 2008

- NAND consistencies with ONFI
 - Device identification using the parameter page
 - Array architecture and addressing
 - Command set
 - Timing modes and parameters
 - ECC and endurance
 - Factory-marked bad blocks
 - Device behavior and status
 - Packaging

ONFI is a Standard, Not the Sheriff

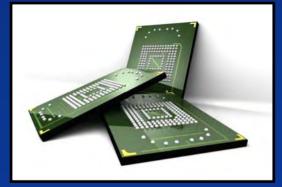
- The ONFI specification does not mandate device architectures
 - Page size
 - Number of pages per block
 - Number of blocks
 - Number of planes
 - Amount of ECC required
 - Array performance
- They are discoverable by the host in the parameter page

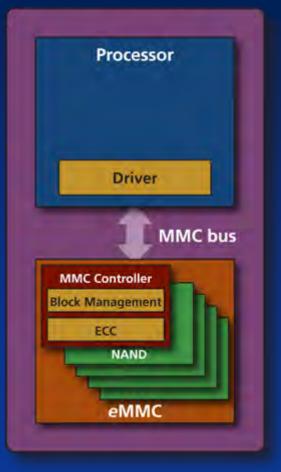



ONFI Block Abstracted NAND

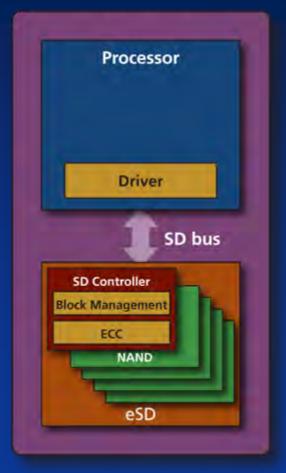
Direct NAND Interface

BA NAND Interface


- BA NAND uses the same NAND interface (signals, electricals, packaging)
- Uses a different protocol
- Data is stored in sectors


- Interface and packaging standardized by MMCA and JEDEC
- MMC interface found already on many wireless controllers today
- e-MMC is supported by most NAND vendors
 - Hynix (e-NAND)
 - Micron (*e*-MMC[™])
 - Samsung (moviNAND[™])
 - Toshiba (eMMC NAND)

Santa Clara, CA USA August 2008



- Interface standardized by SDA; packaging compatible with JEDEC
- SD interface found already on many wireless controllers today
- Though a standard interface, it is not an open standard—not publicly published
- Not royalty-free

SD Interface

The interface "round-up"

Santa Clara, CA USA August 2008

Raw Interface Comparison

	Async NAND	Source-Sync NAND
Voltage	3.3V/1.8V	3.3V/1.8V
Data bus width	X8, x16	x8
Max clock	50 MHz	66 MHz DDR
Max transfer rate	50 MB/s	133 MB/s
Annual membership cost	None	None
	Hynix	Intel
Supplier support	Intel	Micron
	Micron	more coming
Package standard	JEDEC/ONFI	ONFI

*TSOP package references JEDEC mechanical drawings.

Managed Interface Comparison

	BA NAND	eSD	e-MMC
Voltage	3.3V/1.8V	3.3V/1.8V	3.3V/1.8V
Data bus width	x8	x1, x4	x1, x4, x8
Max clock	50 MHz	50 MHz	52MHz
Max transfer rate	50 MB/s	25 MB/s	52 MB/s
Annual membership cost	None	Yes	None
Supplier support	Coming	Toshiba (eSD) Sandisk (iNAND)	Micron (<i>e</i> -MMC™)
			Samsung (moviNAND™)
			Toshiba (eMMC)
			Hynix (e-NAND)
Package standard	ONFI	JEDEC	JEDEC

*Follows JEDEC JC64.1 NAND card/module package format.

Upcoming Managed Interfaces

UFS (JEDEC)

- Uses ring topology for data transmission
- Low voltage, high performance
- One-to-many differential pairs for scalable throughput
- Protocol optimized for storage interfaces

USB 3.0 (USB-IF)

- USB 3.0 controller may become embedded with NAND memory in the same package
- Low voltage, high performance
- One differential pair
- Protocol optimized for many interfaces

Embedded Flash-Based Interface Standards Organizations

- MultiMediaCard Association (MMCA) <u>http://www.mmca.org/</u>
- JEDEC <u>http://www.jedec.org/</u>
- Open NAND Flash Interface (ONFI) Workgroup <u>http://www.onfi.org/</u>
- SD Card Association (SDA) <u>http://www.sdcard.org/</u>
- USB Implementers Forum <u>http://www.usb.org/</u>

About Michael Abraham

- Manager of Micron's NAND Flash Applications Engineering group
- B.S. in Computer Engineering from Brigham Young University

- Micron's technical representative in ONFI and JEDEC for NAND Flash
- Key role in defining and standardizing the new highspeed NAND interface within Micron and at ONFI

©2007-2008 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Santa Clara, CA USA August 2008

