

# SSDs A Shift in Data Storage

## Todd Dinkelman Micron Technology, Inc.





- SSD Defined
- Quick Comparison
- Why MLC
- Reliability/Endurance
- Summary





# What is Being Called an SSD?

- USB interface embedded solution
- Module-based
- IDE interface card w/o enclosure
- 1.8-inch and 2.5-inch, 32GB and 64GB SSD for notebook and performance computing
- Module/card with custom form factor, density, and interface





#### The Complexity of HDDs



#### HDD Advantages

- Density
- Price/GB



# The Simplicity of SSDs



- SSD Advantages
  - Performance
  - Size
  - Weight
  - Ruggedness
  - Temperature
    Range
  - Power





|              | SSDs         | HDDs         |
|--------------|--------------|--------------|
| Capacity     |              | $\checkmark$ |
| Performance  | $\checkmark$ |              |
| Reliability  | $\checkmark$ |              |
| Endurance    | $\checkmark$ | $\checkmark$ |
| Power        | $\checkmark$ |              |
| Size         | $\checkmark$ |              |
| Weight       | $\checkmark$ |              |
| Shock        | $\checkmark$ |              |
| Temperature  | ✓            |              |
| Cost per bit |              | $\checkmark$ |

- Due to recent advances in NAND lithography, SSD densities have reached capacities for mass market appeal
- SSDs offer many features that lead to improved user experiences
- Early shortcomings regarding reliability and endurance are being overcome





# **SSDs in Computing**

| and c                              | Relative<br>Latency |                     | Relative<br>Cost/Bit |
|------------------------------------|---------------------|---------------------|----------------------|
| <image/>                           | 1                   | L1 Cache            | -1,800               |
|                                    | 2.5                 | L2 Cache            | 1,400                |
|                                    | 1,200               | DRAM                | 10                   |
|                                    | 25,000              | SSD                 | 3                    |
|                                    | 25,000,000          | HDD                 | 1                    |
|                                    | NAND Flash c        | loses the la        | tency gap            |
| Santa Clara, CA USA<br>August 2008 | TOR                 | Cost/bit data as of | November 2007        |



#### NAND in Computer Architecture





# MLC and SLC Differences

- SLC
  - Single-level cell
    - One bit per cell
- MLC
  - Multi-level cell
    - 2 bits per cell today
    - 3 and 4 bits per cell future
- Endurance
  - SLC is typically 10 times better than MLC
- Performance
  - SLC provides ~2X the write performance of MLC
- Price
  - SLC-based products have better than 2X the price/GB compared to MLC







## **SSD Market Trends**

#### Improvements in controller technology

 Moving from CompactFlash architectures to true SSD controllers

#### Notebooks and PCs

- Migration to MLC
  - Light usage model
  - Cost, size, and performance are all important
- Value Proposition
  - Better than desktop performance in an ultra-light notebook











# NAND Reliability and Endurance

|             | Effect                | Description                                                                       | Observed As                                               | Management                  |
|-------------|-----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------|
| Reliability | Program<br>Disturb    | Cells not being<br>programmed<br>receive charge<br>via elevated<br>voltage stress | Increased read<br>errors immediately<br>after programming | ECC and Block<br>Management |
|             | Read<br>Disturb       | Cells not being<br>read receive<br>charge via<br>elevated voltage<br>stress       | Increased read<br>error at high<br>number of reads        | ECC and Block<br>Management |
|             | Data<br>Retention     | Charge loss over time                                                             | Increased read errors with time                           | ECC and Block<br>Management |
| Endurance   | Endurance/<br>Cycling | Cycles cause<br>charge trapped in<br>dielectric                                   | Failed<br>program/erase<br>status                         | Retire Block                |





# NAND Error Rate

#### Bit Error Rate

- Failing bits corrected with appropriate levels of ECC
- Correctable bit errors do not result in data loss
- Raw Bit Error Rate (RBER): Bit error rate prior to ECC
- Uncorrectable Bit Error Rate (UBER): Bit error rate after ECC
- UBER is projected using the measured RBER and specific level of ECC





## **SSD** Reliability and Endurance

#### SSD reliability has two parts

- MTBF
  - Measure of time between failures due to manufacturing or component defects
  - 2 million hours is typical for Micron SSDs
- Endurance
  - SSDs all wear out due to data writes
  - Indication of drive life based on a usage condition
  - Micron SSDs are specified to last 5 years under predefined usage conditions
  - Usage conditions vary for consumer and performance products





**Endurance Factors** 

- Wear-leveling efficiency
- Write amplification
- NAND cycles
- SSD densities





#### Wear-Leveling

- Dynamic wear-leveling uses the available free space and the incoming data to equally wear each of the physical blocks
  - Static data is not included in the available pool of wear-leveling blocks, leaving a portion of the drive with no wear
- Static wear-leveling considers all physical blocks in the SSD, regardless of content, and maintains an even level of wear across the entire drive





# Wear-Leveling Example

- MLC devices can typically support 10,000 cycles per block
- If you erased and reprogrammed one block every second, you would exceed the 10,000 cycling limit in just 3 hours!

60 x 60 x 3 = 10,080

 Rather than cycling the same block, wear-leveling involves distributing the number of blocks that are cycled





#### Wear-Leveling Example (continued)

- An 8GB MLC-based SSD contains 32,768 independent blocks (each block is 256KB of data)
- If we took the previous example and distributed the cycles over all 32,768 blocks, each block would have been programmed once after 9 hours
- If you provided perfect wear-leveling on an 8GB drive, you could erase and program a block every second, every day for over 10 years!







# Write Amplification

- Additional write overhead due to garbage collection and wear-leveling
  - Write Amplification = Flash Writes / Host Writes
- Influence on host data patterns
  - Large number of small random transfers increases write amplification
- Influenced by number of spare blocks and static data
  - Keeping a percentage of the drive as spares will bound the write amplification







Santa Clara, August 2008

Aricron



#### **SSD Endurance Calculation**

 Write amplification and wear-leveling efficiency must be accounted for when calculating SSD lifetime

Life in Years =  $\frac{\text{NAND Cycles * SSD Capacity}}{\text{Amplification Factor * GB/Year}}$ 





- Given a <u>capacity point</u>, <u>NAND endurance</u>, and <u>writes-per-day</u>, the upper limit on SSD lifetime is defined
  - Example: A 64GB SSD, 10K PROGRAM/ERASE cycles and write duty of 350 GB/day will wear out in 5 years
- Uneven wear within a NAND Flash device may cause 'hot spots'
  - Wear-leveling of NAND is necessary
- Improper NAND data management may cause lifetime to be significantly less than the limit
  - A Flash ERASE operation must occur before a page can be rewritten
  - To improve overall throughput, erase granularity is much larger than write granularity
  - LBA traffic pattern can cause lots of extra data movement





Average Number Of Times Per Day The Drive Space Gets Written

33% WRITEs2K random IOPs64GB drive(55GB user-accessible20% reserved spares





#### **SSD** Capacity Effect on Endurance



SSD life will double with every doubling of capacity





#### SSDs bring many advantages to storage

- Performance
- Power
- Reliability
- Environmental ruggedness
- Different products for different markets
  - MLC-based SSDs for PCs
- Reliability has two aspects
  - Endurance and MTBF





# Thank You

