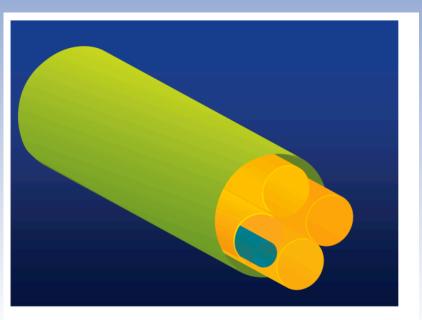


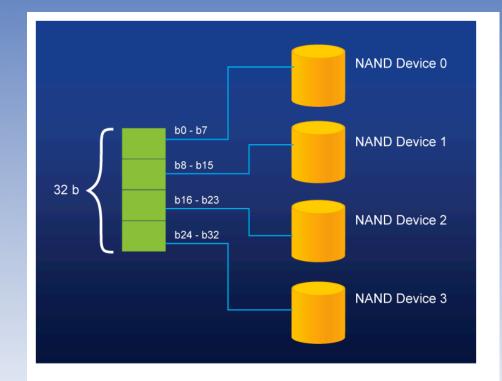
NAND Interleaving & Performance

What You Need to Know

Presented by: Keith Garvin Product Architect, Datalight



- What is interleaving, why do it?
- Bus Level Interleaving
- Interleaving Between Flash Planes
- Conclusions


What & Why of Interleaving?

- What is Interleaving
 - Device bus interleaving
 - Flash Plane Interleaving
 - IO Interleaving (concurrency)

- Hardware
 Simplicity
- Potential Return: Two devices = 2X the performance (per IO cycle)
- Additional overhead is minimal

Flash Characteristics

- Minimum programmable size will increase
- Error rates increase with added devices
- Increased Power Consumption

- Challenges of Bus Level Interleaving
 - Large page size may necessitate double buffering
 - 2X Error rates require interleaved EDC or more powerful correcting codes
 - Increased bad block counts require more complex mapping of bad flash erase blocks

- Increased Power Consumption
 - Achieving large disks (100's of GB to TB) will require unique heat dissipation strategies.
 - Large SSDs will need to carefully consider device placement and airflow.

Flash Plane Interleaving

- Interleaving Between Flash Planes
 - No special system hardware design is needed
 - Flash hardware & software must support planes
- Potential Return
 - 2X on paper, implementation range: 30% to 80%
 - Flexible implementation in software

Flash Plane Interleaving

- Challenges with Flash Plane Interleaving
 - Access must be restricted to matching page address ranges across device planes
 - Bad blocks may prevent multi-plane operations where present
 - Managing bad blocks across planes requires unique solutions

More interleaving...

- What does all this add up to???
 - Bus level interleaving is good match the native width to maximize throughput.
 - Interleaving across device planes achieves even more performance improvements.
 - One more to consider...

- Take advantage of multi-die packages
 - Separated R/B# pins allow for concurrency
 - RAID0 style interleave without the penalty of altered geometries
 - Make certain your design has DMA to handle moving all this data.

Interleaving Challenges

- Flash Page Size Increases
 - Devices may not support partial page writes.
 - May require double buffering.
 - File systems or legacy applications may not accommodate larger write sizes.
 - Know the application, use case, and hardware capabilities.

Interleaving Challenges

- Bad Block Management
 - Bus level interleaving increases bad block counts.
 - Bad blocks will negate some performance gains.
 Plane interleaving may not be realized.
 - Software solutions will have more flexibility
 - If rolling your own, investigate the IP rights.

Interleaving Challenges

- Error Detection & Correction
 - Interleaving effectively increases error rate.
 - Errors may now exist within the same logical page or block.
 - Use a fast HW based ECC

- Ensure the hardware & software supports
 - Your flash hardware, interleaving requirements, and performance requirements.
- Establish an interleaving balance
 - Consider the burst rate, latency, and sustained
- Use the performance features provided by the flash (multi-planes, cache mode, ...)

- Micron Increasing NAND Flash Performance
 <u>http://www.micron.com/products/nand/technotes</u>
- Datalight Blog <u>http://www.datalight.com</u>