
Accelerating SSD Performance with HLNAND

Roland Schuetz MOSAID Technologies Inc. David Won, INDILINX

- PC Architecture and the Solid State Drive
- HLNAND Introduction
- HLNAND Enhances SSD Performance
- Conclusions

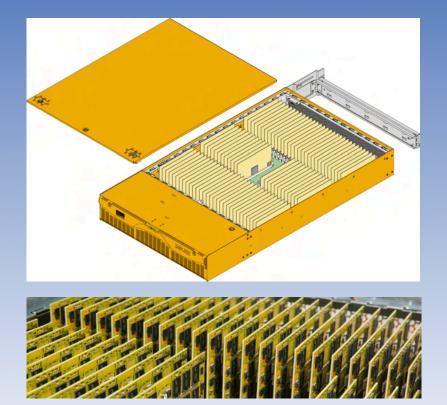


Flash Memory SSD Market Segment

- Three categories:
 - Enterprise
 - Notebook / PC
 - NetBook / Ultraportable

Source: INDILINX & Super Talent

Source: STEC


NetBook / Ultraportable

Source: STEC

Enterprise Flash Storage Excellent Market for HLNAND SSDs

- Enterprise application move huge amounts of data and are IO bound
- These include:
 - File, web, transaction servers
 - Multimedia editing systems
 - Simulation servers/ workstations
- Current Flash based enterprise applications based on conventional, 40 – 100 MBps sub-systems

Source: Violin 1010 Memory Appliance, Violin Memory, Inc.

- Leading NAND, memory module, and specialized SSD manufacturers offer conventional NAND flash based product
- Cost is pivotal for SSD adoption
- Little product and architectural differentiation
 - 4 channel
 - 4-way interleave
- Similar cost structure
 - NAND flash constitutes the majority of the BOM
 - Vertically integrated manufacturers have pricing advantage
- Similar performance
 - 30 ~ 100MB/s Read/Write performance
 - No one competitor has performance lock on the market

FlashMemory How are Current SSDs Stacking Up?

Solid State Disk

Storage The Worldwide Leader in MissionCritical SSD Storage Systems www.soliddata.com

IDE/SATA Soild State

Disk 512MB - 64GB Capacities Avali.Industrial Turbo& Wide Temp. models www.ATACOM.com

Solid State Hard Drive

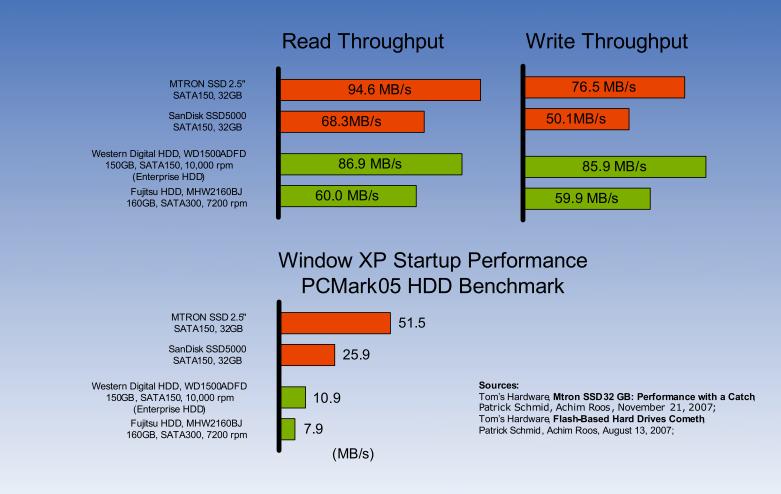
Bargain Prices. Smart Deals.Save on Solid State Hard Drive! Shopzilla.com

Solid State Drives Guide

The Top Industrial Resource.Find Solid State Drives Quickly. Solidstatedrives.Industrial 101

Sponsored Links

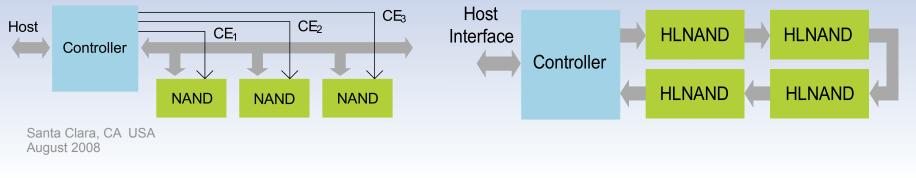
The Macbook Air SSD Performance Boost: Pretty Much Non-Existent



The gang over at Ars Technica got their hands on both an SSD-packed Macbook Air as well as a regular, HDD-equipped model and then put both through their paces to see if the \$1,300 difference in price was worth it. So they had two computers, both exactly the same save a 200Mhz bump in processor speed and a swapping out of a 4200rpm PATA drive for a hot, hot SSD drive. So did the performance shoot through the roof, confirming all of our wildest wet dreams about SSDs? Uh, no, not really.

GIZMODO TEAM Tip your editors: tips@gizmodo.com

Santa Clara, CA USA August 2008 Source: Engadget

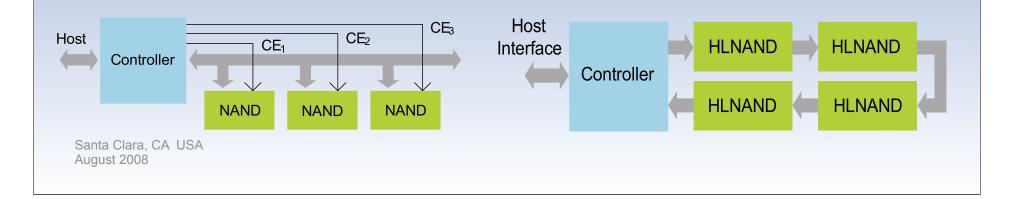

HLNAND – New High Speed NAND Standard

Conventional NAND

- 8 bit, bidirectional, multi-drop bus
- Asynchronous LVTTL signaling up to 40Mb/s/pin
- Speed degradation with more than 4 devices on bus
- Chip Enable (CE) signal required for each device
- Power hungry 3.3V I/O

HLNAND

- Unidirectional, point-to-point, daisy-chain cascade with programmable link width; 1- 8 bits
- Synchronous DDR signaling up to 800Mb/s/pin
- Each ring supports up to 255 devices with no bandwidth degradation
- Single CE per ring enables pin controller count reduction
- Low Power 1.8V I/O


my HLNAND – New High Speed NAND Standard (cont'd)

Conventional NAND

 No new features to enhance flash performance or simplify controller and SSD design

HLNAND

- New device features enhance performance and simplify controller and SSD design
- New, low-stress program scheme enables:
- Random page program
- Page-pair erase
- Multi-page & Multi-block erase

- Certain types of PC use are IO intensive -> frequent HDD/SSD access; Ex: creating slide presentation, virus scan, etc.
- Booting PC is very IO intensive since the OS must load a large amount of data from bulk storage to DRAM

- Populate 1GB DRAM from Flash Based Bulk Storage
- Conventional Flash SSD with 60MB/s BW takes ~17sec
- Optimized conventional flash SSD with 95MB/ s* takes ~10 sec

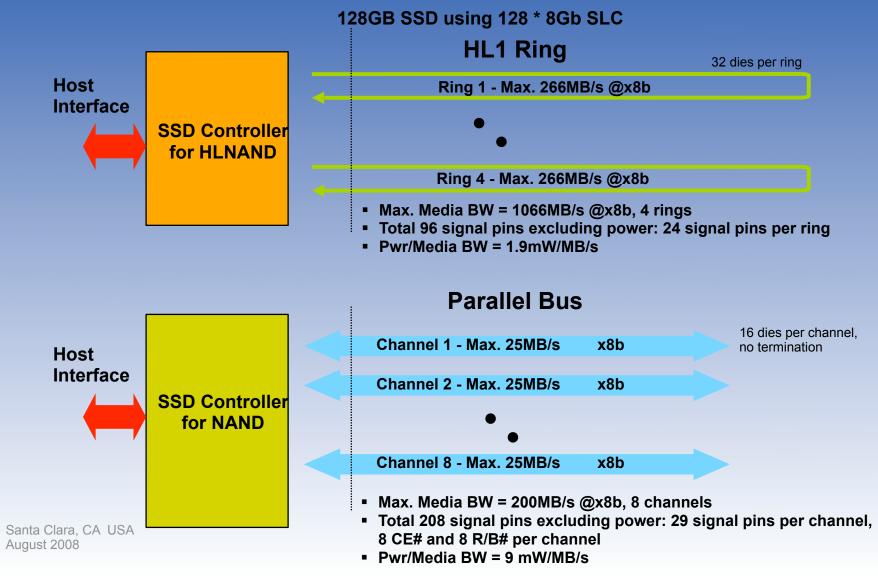
10 Seconds is very observable time!

* Mtron SSD 32 GB: Performance with a Catch Patrick Schmid, Achim Roos, November 21, 2007; SSD: Mtron MSDSATA6025032NA

- Populate 1GB DRAM from Flash Based Bulk Storage
- HLNAND SSD with one Ring and 266MB/s BW takes ~3.8sec
- Optimized HLNAND SSD with 4 Rings and ~1.1GB/s BW takes ~.9sec

HLNAND based SSDs offer 260% - 1100% IO rate improvement. 0.9 seconds is virtually instant!!

IOPS are Holly Grail in Enterprise Applications

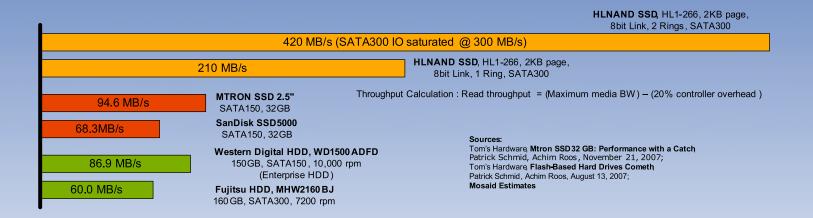

- SSDs offer significantly higher I/O (inputs/outputs) per second Than HDDs: HLNAND will shine
- HDD (typical enterprise class) ~150
- SSD, SATA (advertised by Sandisk) 7,000
- SSD, 4G Fiber Channel (advertised by STEC) 45,000
- HLNAND 300,000* IOPS

Source: Sandisk, STEC, and Deutsche Bank estimates

* Assume similar design to STEC SSD and multiply by media speed improvement; 45,000 * (266/40).Not including 4GFC saturation limit.

Holy Grail of the Monastery of Xenophontos, Macedonian Heritage, 2000-2008

Maximum Read Throughput (B=200MB/s) Maximum Read Throughput (B=40MB/s) 800 160 700 140 600 120 Throughput (MB/s) Throughput (MB/s) 500 100 -1 Bus — 1 Ring 80 400 - 2 Ring -2 Bus 60 300 -3 Ring -3 Bus 40 200 — 4 Ring 4 Bus 20 100 0 0 2 3 4 1 1 2 3 Δ Number of Chips per Bus Number of Chips per Ring


HLNAND-based SSD, Media Rate

NAND-based SSD, Media Rate

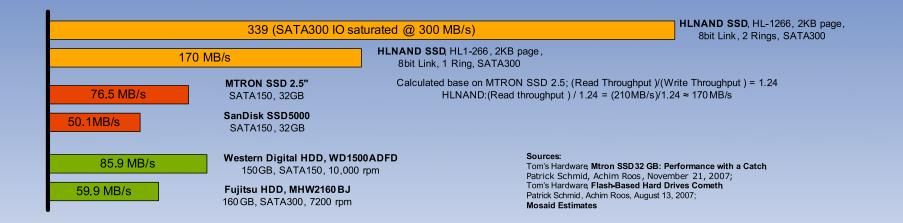
Plots from Mobile Embedded Lab, University of Seoul, 2008

Read Throughput

HLNAND SSD vs. NAND SSD Write Throughput, Simulation Results

Maximum Write Throughput (B=200MB/s, 1Ring) (MB/s) Throughput Number of Chips

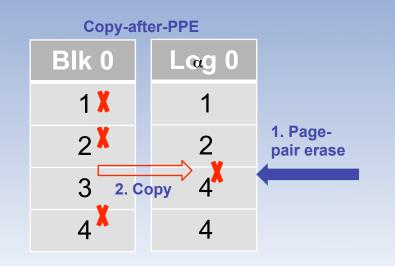
Maximum Write Throughput (B=40MB/s) [hroughput (MB/s) 1 Bus -2 Bus -3 Bus -4 Bus Number of Chips per Bus

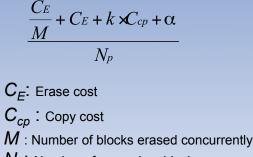

HLNAND-based SSD, Media Rate

NAND-based SSD, Media Rate

Plots from Mobile Embedded Lab, University of Seoul, 2008

Write Throughput


- Controller responsible for high cost jobs of wear-leveling and garbage collection
- Wear leveling operations are block based and include
 - Block Merge
 - Block Switch
 - Block Switch after copy
 - Block Migration
- HLNAND provides means of doing page-pair (wordline) based wear-leveling reducing background operations

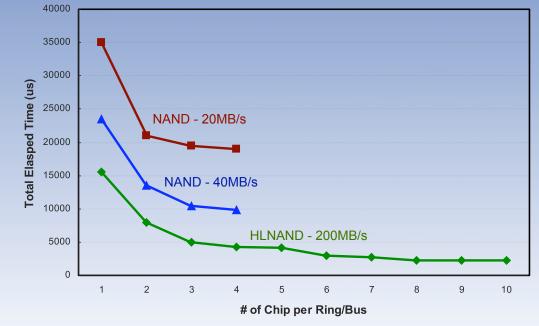


- New HLNAND features reduce block recycling costs
 - Page-Pair Erase
 - Random page program
 - Partial block erase
 - Multi block erase
- Erase size matches prog/read size thereby reducing program erase cycles related to wear-leveling

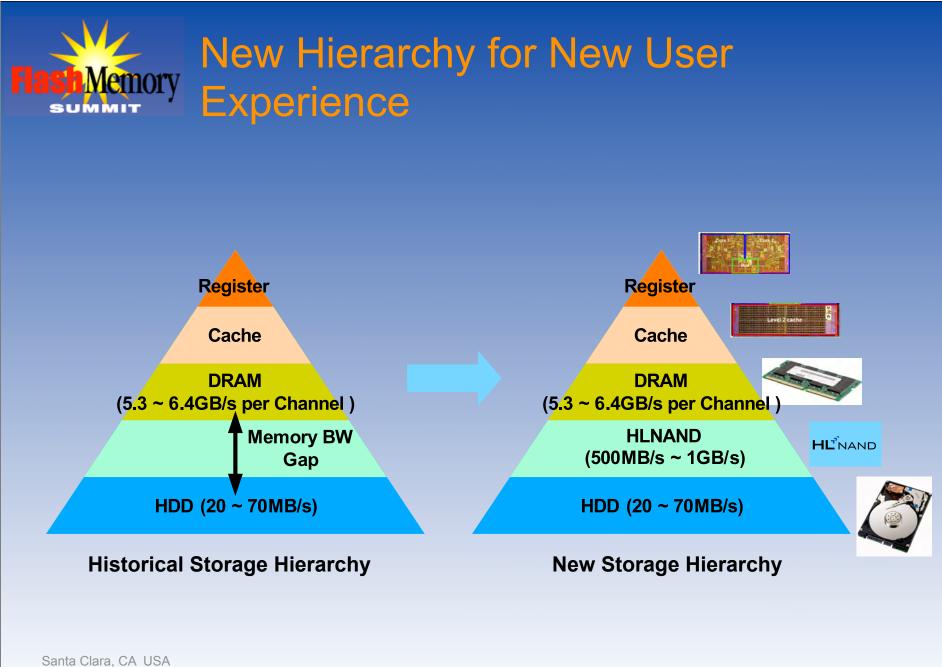
- Page-pair erase introduces low cost wearleveling opportunities
- Translates into greater system longevity and less controller overhead

- N_p : Number of pages in a block
- *k*: Number of page-copies α: Additional copy overhead

Memory Synthetic Workload Simulation


X8b

SUMMIT


- 4KB page size
- 256KB block size
- 2048 blocks/bank
- 1 bank

Read	Program	Copyback	Erase
60%	25%	10%	5%
617	263	82	38

Wokload

Santa Clara, CA USA August 2008 Experiment performed by Mobile Embedded Lab, University of Seoul, 2008

August 2008

HLNAND's features contribute to the acceleration of SSD satisfaction and adoption

High Speed Interface

Low Power Consumption

High Scalability

Interface Extensibility

Advance Core Features

Reduced Overall Cost with Increased Performance