A Closer Look at NAND Flash

Dean Klein

Vice President of Memory System Development

© 2008 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

August 08

NAND World Dominance

Now, let's be honest.

It's not about write cycles. It's about usage scenarios and choosing the "write" NAND for the application.

Now, let's be brutally honest.

Source: INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2007 EDITION PROCESS INTEGRATION, DEVICES, AND STRUCTURES

Micron 34nm, 32Gbit NAND

Approximately 1.6 terabytes of NAND per wafer

Rapid Scaling Driving Early Learning

Comparative Memory Cells

Cell Size (u ²)	Tech Node (nm)	Cell size (F ²)	Endurance				
IBM/Infineon MRAM							
0.74	130	44	Excellent				
Freescale 6T-SRAM							
0.69	65 163		Excellent				
Intel 45nm 6T-SRAM							
0.27	45 135		Excellent				
Freescale TFS: Nanocrystaline							
0.13	90	16	Unknown				
Freescale eDRAM							
0.12	65	28	Excellent				
Samsung 512Mbit PRAM Device							
0.050	95	5.5	Good				
Micron 40-series DRAM							
0.037	78	6	Excellent				
Micron 60-series NAND							
0.0046	34	4	Good				

Straight Talk: Bits vs. Shrink

2 bits, 4 bits, 6 bits a dollar? All for NAND, stand up & holler

Scaled Cell Sizes:

NAND Will Adapt to the Market

Source: iSuppli JAN 08

Getting dialed in on the applications

- Interfaces optimizations
- Process optimizations
- Controller optimizations
- Design optimizations

NAND Optimizations: ONFI 2.0 HS-NAND

Feature	Standard NAND	High Speed NAND	
"Standard" Asynchronous Interface	Yes	Yes	
Synchronous Interface	No	Yes	
tRC	≥ 25ns (SDR)	7.5ns (DDR)	
tWC	≥ 25ns (SDR)	7.5ns (DDR)	
Standardized	ONFI 1.0	ONFI 2.0	
Scalable to higher performance	No	Yes	
Cache Mode	Some	Yes	
VCCq	3.3V	1.7V to 1.95V	
VCC	3.3V	2.7V to 3.6V	
Parameter Page	Some	Yes	
Package	TSOP	BGA	

A natural extension to Standard NAND

Interface Optimization: Performance Comparison

	High Speed NAND	Traditional SLC NAND	MLC NAND	MLC NOR
Read Performance	200 MB/sec	40 MB/sec	33 MB/sec	103 MB/sec
Write Performance	100 MB/sec	15 MB/sec	3.5 MB/sec	< 1 MB/sec
Erase Performance	1.5 ms	1.5 ms	2 ms	900 ms

Solid State Drives

Gartner's Hype Cycle for PC Technologies 2007

July 08

Gartner's Hype Cycle for PC Technologies 2008

Micron

SSD Cost Parity?

Why SSD's?

• Performance

SSD – Performance

The Storage Gap

SSDs in Computing

Cost/bit Data as of November 2007

NAND

Why SSD's?

• Performance

Power

SSD – Energy

Notebooks: SSD's Can Improve Battery Life

A recent editorial review highlighted that power consumption increases when solid state drives are used in today's notebook computers.

Notebooks: SSD's Can Improve Battery Life

A recent editorial review highlighted that power consumption decreases when solid state drives are used in today's notebook computers.

Notebooks: SSD's Can Improve Battery Life

- Requirements:
 - A well-designed SSD

Efficient Wear Management Algorithms

An Efficient Controller

- Notebook Optimizations for SSD's
- Operating System Improvements
 New SATA commands: ID and Trim
 Disable Defrag

SSD: Power and Performance

SSDs do more with less power

Power Profile

Why SSD's?

- Performance
- Power
- Reliability

SSD – Reliability

Cost of Ownership Analysis from SSDs in Notebooks

Notebooks at Micron: 2000 units

Avg lifespan of notebook: **36 months**

% of employees w/notebook that would benefit from an SSD: **75%**

IT hours to repair HDD failure: **5 hours**

IT hours to recover from HDD fatal error: **5 hours**

HDDs with fatal error per annum: **15 units**

Number of hours employee is idle as a result of HDD repair: **5 hours** Higher Reliability

\$208,300

Increased User Productivity

+ \$415,775

Increased Battery Efficiency

+ \$151,260

Additional Cost for SSDs

- \$300,000
 - = \$475,335 net savings

Micron

SSD's are not just for Notebooks

Industrial Applications

- VOD and IPTV
- Enterprise

HDD & SSD in the Enterprise Server Market

HDD & SSD in the Enterprise Server Market

Making SSD's Enterprise-Ready

- Performance
- Power
- Reliability
- Endurance

Endurance: Wear Leveling

Erase Count by Block R00P34D0 ec30

Micron

"The brightest flashes in the world of thought are incomplete

until they have been proved to have their counterparts in the world of fact."

– John Tyndall, Scientific Materialism

Micron

NAND: by far the most exciting technology you will ever see

aNANDconvenienttruth

NAND: now playing in select systems

