

Introduction to Flash Memory (T1A)

Jim Cooke (jcooke@micron.com)

Staff Architect and Technologist, Architecture Development Group Micron Technology, Inc.

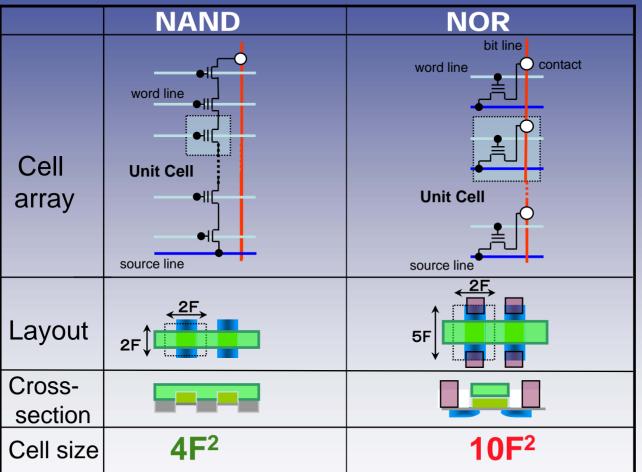
- The basics of Flash and NAND
 - Flash cell comparison
 - NAND and NOR attributes and interface comparison
 - Detailed operations
 - Commands, address, and data operations
- Connecting NAND to a RISC or DSP processor

More NAND Flash device detail

- SLC vs. MLC
- All NAND devices are not created equal
 - Architecture, features, and performance comparisons
- Performance bottlenecks
- ONFI and high-speed NAND introduction
- NAND error modes
 - Program disturb
 - Read disturb
 - Data retention
 - Endurance
 - Wear-leveling
 - ECC fixes almost everything

A Quick Review of Flash Basics

- Cell differences
- NAND attributes
- NAND vs. NOR



Flash Basics

- Flash data is grouped into blocks, which are the smallest erasable entity
 - Erasing a block sets all bits to "1" or bytes to FFh
- The programming operation changes erased bits from "1" to "0"
 - The smallest entity that can be programmed is a bit
- While NAND cannot inherently perform random access, it is possible at the system level through shadowing

Flash Memory Cell Comparison

• NAND Flash's small cell size enables high density and low cost

Basic NAND Attributes

- NAND is very similar to a disk drive; it is sector-based (page-based) Flash and is well-suited for storage of sequential data (such as pictures, audio, and files)
 - Like a disk drive, NAND is not well-suited for random access, such as executing code, although random access can be accomplished at the system level by shadowing the data to RAM (similar to what a PC does with BIOS)
 - Like a disk drive, NAND devices have bad sectors or blocks and require management
 - Like a disk drive, NAND requires error correction code (ECC)
 - Unlike a disk drive, it is possible to wear out the NAND cell; with good wear-leveling, this is typically not an issue

Basic NAND Attributes

- NAND is available in large capacities and is the lowest cost Flash memory available today
- NAND is finding its way into many embedded applications and is used in virtually all removable cards
 - USB cards
 SD secure digital
 - Memory stick
 CF compact Flash
 - MMC multimedia card
- Multiplexed interface provides similar pinout over all devices
 - x8 signal pinout has not changed from 64Mb pinout
- x8 devices are used mostly in high capacity (3.3V) consumer applications; the x16 devices are mostly used in embedded (1.8V) applications

Basic NAND/NOR Comparison

NAND

- Advantages
 - Fast writes
 - Fast erases
- Disadvantages
 - Slow random access
 - Byte writes difficult
- Applications
 - File (disk) applications
 - Voice, data, video recorder
 - Any large sequential data

NOR

- Advantages
 - Random access
 - Byte writes possible
- Disadvantages
 - Slow writes
 - Slow erase
- Applications
 - Replacement of EPROM
 - Execute directly from nonvolatile memory

Flash Memory Comparison

	Characteristic	NAND Flash MT29F2G08	NOR MT28F128J3							
	Random access read	25µs (first byte) 0.03µs each for remaining 2,111 bytes	0.12µs							
	Sustained read	23 MB/s (x8) or	20.5 MB/s (x8) or							
	speed (sector basis)	37 MB/s (x16)	41 MB/s (x16)							
	Random write speed	~300µs/2,112 bytes	180µs/32 bytes							
	Sustained write speed (sector basis)	5 MB/s	0.178 MB/s							
	Erase block size	128KB	128KB							
	Erase time per block (typ)	2ms	750ms							
Ą	NAND Flash is ideal for data or image files; if be shadowed to R	NOR Flash is ideal for direct code execution (boot code) although it still needs to be shadowed (for speed)								

Flash Interface Comparison

- NOR Flash
 - Random-access interface typically composed of: -
 - CE# chip enable
 - WE# write enable
 - OE# output enable

- D15-D0 data bus
- A20-A0 address bus
- WP# write protect

NAND Flash

- I/O device-type interface composed of:
 - CE# chip enable
 - WE# write enable
 - RE# read enable
 - CLE command latch enable

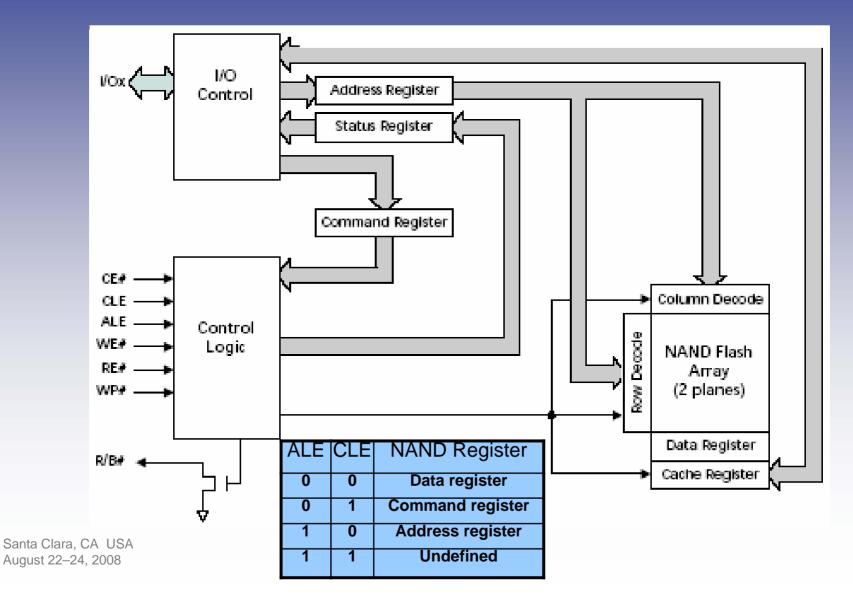
- ALE address latch enable
- I/O 7-0 data bus (I/O 15-0 for x16 parts)

41 pins

23 pins

(for x16)

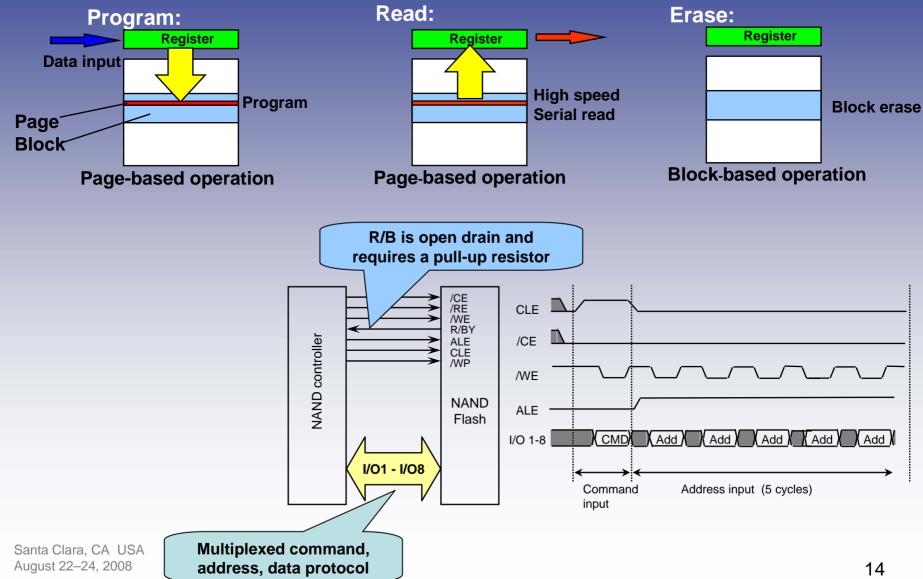
- WP# write protect
- R/B# ready/busy


NAND Flash Physical Interface (TSOP 1)

x16	x8					x8	x16
NC NC NC NC R/B# RE# NC CE# NC Vcc Vcc Vcc NC CLE ALE WE#	NC NC NC NC R/B# RE# CE# NC CE# NC Vcc Vcc Vcc NC CLE ALE WE#	1 ● 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Pin Name R/B# RE# CE# CLE ALE WE# WE# WP#	Definition Ready Busy Read Enable (L) Chip Enable (L) Command Latch Enable Address Latch Enable Write Enable (L) Write Protect	48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31	Vss ² DNU NC I/O7 I/O6 I/O5 I/O4 NC Vcc ² DNU Vcc Vss NC Vcc ² NC I/O3 I/O3 I/O2	Vss I/O15 I/O14 I/O13 I/O7 I/O6 I/O5 I/O4 I/O12 Vcc DNU Vcc Vss NC Vcc I/O11 I/O3 I/O2
WP# NC	WP# NC	19 20			30	I/O1 I/O0	I/O1 I/O0
NC NC	NC NC	21 22			28 27	NC NC	I/O10 I/O9
NC NC	NC NC	22 23 24			26 25	DNU Vss ²	I/O9 I/O8 Vss

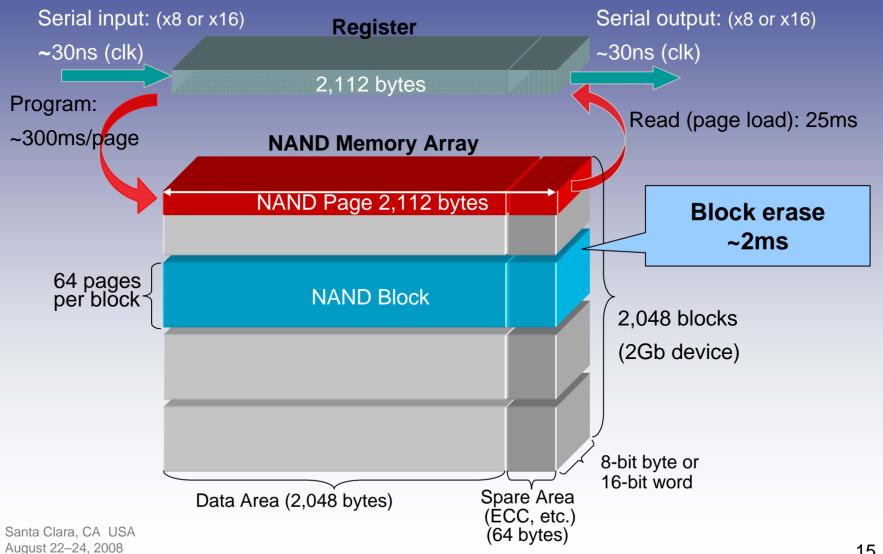
Indirect addressing enables no pinout changes among densities Note 2: Additional Vcc and Vss recommended for new PCB designs

NAND Block Diagram

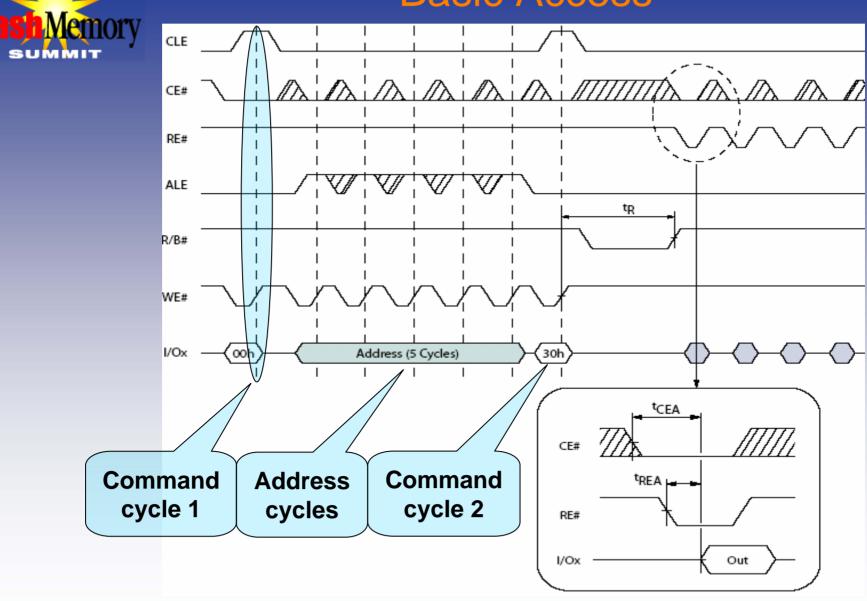


Detailed Operations

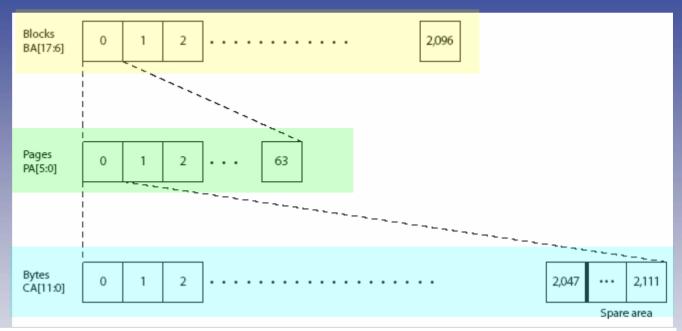
Architecture Addressing Basic commands



Basic NAND Flash Operations



SLC NAND Flash Memory Diagram



Basic Access

Large-Block NAND Addressing

CAx = column address; RAx = row address.

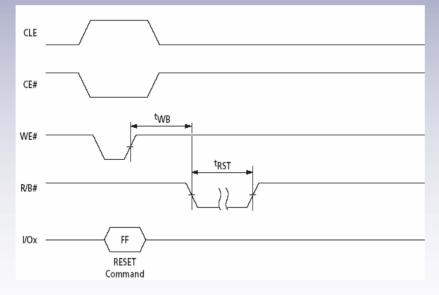
Cycle	I/07	I/06	I/05	I/04	I/03	I/02	I/01	I/00
First	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
Second	LOW	LOW	LOW	LOW	CA11	CA10	CA9	CA8
Third	RA19	RA18	RA17	RA16	RA15	RA14	RA13	RA12
Fourth	RA27	RA26	RA25	RA24	RA23	RA22	RA21	RA20
Fifth	LOW	LOW	LOW	LOW	LOW	LOW	RA29 ¹	RA28

Notes: 1. Die address boundary: 0 = 0 - 2Gb, 1 = 2Gb - 4Gb.

NAND Command List Standard 2Gb (256MB) NAND

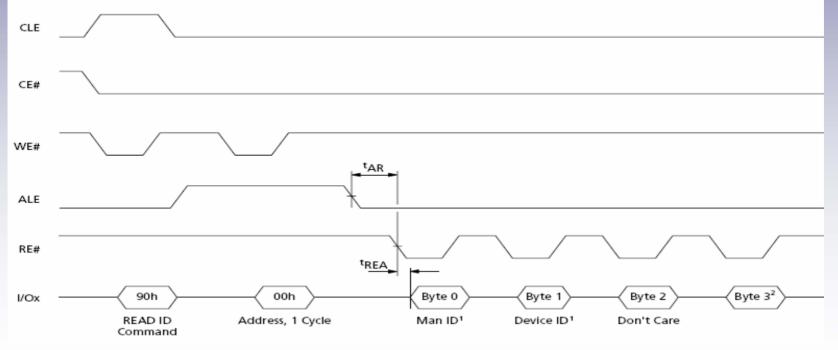
Command	Command Cycle 1	Number of Address Cycles	Data Cycles Required ¹	Command Cycle 2	Valid During Busy
PAGE READ	00h	5	No	30h	No
PAGE READ CACHE MODE START	31h	—	No	—	No
PAGE READ CACHE MODE START LAST	3Fh	—	No	—	No
READ for INTERNAL DATA MOVE	00h	5	No	35h	No
RANDOM DATA READ	05h	2	No	E0h	No
READ ID	90h	1	No	—	No
READ STATUS	70h	—	No	—	Yes
PROGRAM PAGE	80h	5	Yes	10h	No
PROGRAM PAGE CACHE MODE	80h	5	Yes	15h	No
PROGRAM for INTERNAL DATA MOVE	85h	5	Optional	10h	No
RANDOM DATA INPUT	85h	2	Yes	—	No
BLOCK ERASE	60h	3	No	D0h	No
RESET	FFh	—	No		Yes

For ease of presentation:


Basic command

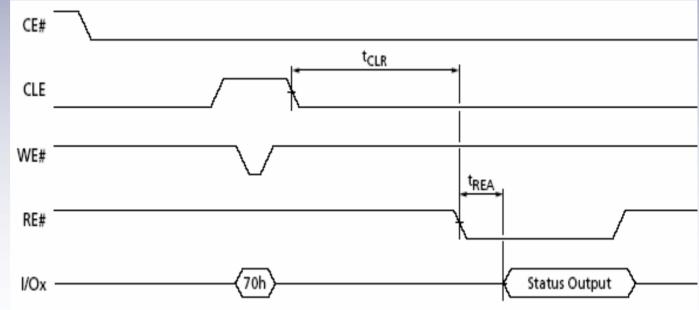
Advanced command

Reset Operation


Command	Command Cycle 1	Number of Address Cycles	Data Cycles Required ¹	Command Cycle 2	Valid During Busy
PAGE READ	00h	5	No	30h	No
PAGE READ CACHE MODE START	31h	—	No	_	No
PAGE READ CACHE MODE START LAST	3Fh	—	No	_	No
READ for INTERNAL DATA MOVE	00h	5	No	35h	No
RANDOM DATA READ	05h	2	No	E0h	No
READ ID	90h	1	No	_	No
READ STATUS	70h	—	No	_	Yes
PROGRAM PAGE	80h	5	Yes	10h	No
PROGRAM PAGE CACHE MODE	80h	5	Yes	15h	No
PROGRAM for INTERNAL DATA MOVE	85h	5	Optional	10h	No
RANDOM DATA INPUT	85h	2	Yes	—	No
BLOCK ERASE	60h	3	No	D0h	No
RESET	FFh	—	No	_	Yes

Read ID Operation

Command	Command Cycle 1	Number of Address Cycles	Data Cycles Required ¹	Command Cycle 2	Valid During Busy
PAGE READ	00h	5	No	30h	No
PAGE READ CACHE MODE START	31h	—	No	_	No
PAGE READ CACHE MODE START LAST	3Fh	—	No	_	No
READ for INTERNAL DATA MOVE	00h	5	No	35h	No
RANDOM DATA READ	05h	2	No	E0h	No
READ ID	90h	1	No	—	No
READ STATUS	70h	—	No	_	Yes
PROGRAM PAGE	80h	5	Yes	10h	No
PROGRAM PAGE CACHE MODE	80h	5	Yes	15h	No
PROGRAM for INTERNAL DATA MOVE	85h	5	Optional	10h	No
RANDOM DATA INPUT	85h	2	Yes	_	No
BLOCK ERASE	60h	3	No	D0h	No
RESET	FFh	_	No	—	Yes


Device IDs

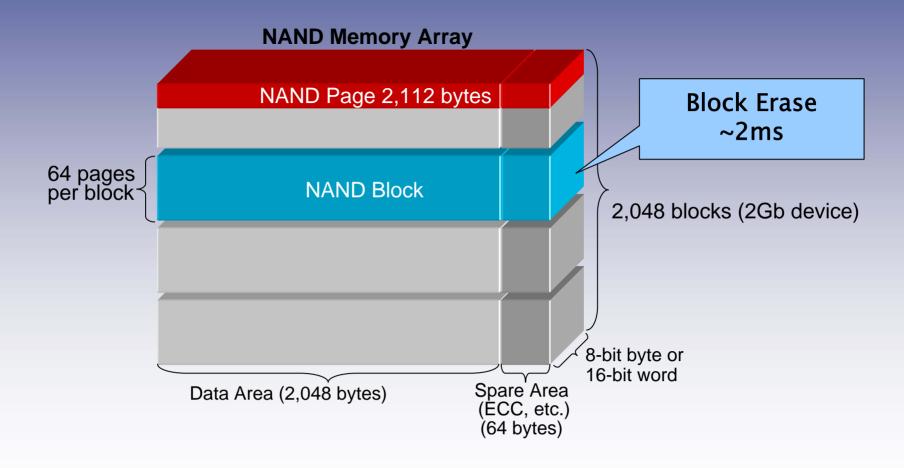
Density	x8/x16	1.8V/3.3V	# of Die	Byte 0 Manf. ID	Byte 1 Device ID
1Gb	x8	1.8V	1	2Ch	A1h
1Gb	x8	3.3V	1	2Ch	F1h
1Gb	x16	1.8V	1	2Ch	B1h
1Gb	x16	3.3V	1	2Ch	C1h
2Gb	x8	1.8V	1	2Ch	AAh
2Gb	x8	3.3V	1	2Ch	DAh
2Gb	x16	1.8V	1	2Ch	BAh
2Gb	x16	3.3V	1	2Ch	CAh
4Gb	x8	1.8V	2	2Ch	ACh
4Gb	x8	3.3V	2	2Ch	DCh
4Gb	x16	1.8V	2	2Ch	BCh
4Gb	x16	3.3V	2	2Ch	CCh
8Gb	x8	1.8V	4	2Ch	ACh
8Gb	x8	3.3V	4	2Ch	DCh
8Gb	x16	1.8V	4	2Ch	BCh
8Gb	x16	3.3V	4	2Ch	CCh

Read Status Operation

Command	Command Cycle 1	Number of Address Cycles	Data Cycles Required ¹	Command Cycle 2	Valid During Busy
PAGE READ	00h	5	No	30h	No
PAGE READ CACHE MODE START	31h	—	No	_	No
PAGE READ CACHE MODE START LAST	3Fh	—	No	_	No
READ for INTERNAL DATA MOVE	00h	5	No	35h	No
RANDOM DATA READ	05h	2	No	E0h	No
READ ID	90h	1	No	—	No
READ STATUS	70h	—	No	—	Yes
PROGRAM PAGE	80h	5	Yes	10h	No
PROGRAM PAGE CACHE MODE	80h	5	Yes	15h	No
PROGRAM for INTERNAL DATA MOVE	85h	5	Optional	10h	No
RANDOM DATA INPUT	85h	2	Yes	—	No
BLOCK ERASE	60h	3	No	D0h	No
RESET	FFh	—	No	—	Yes

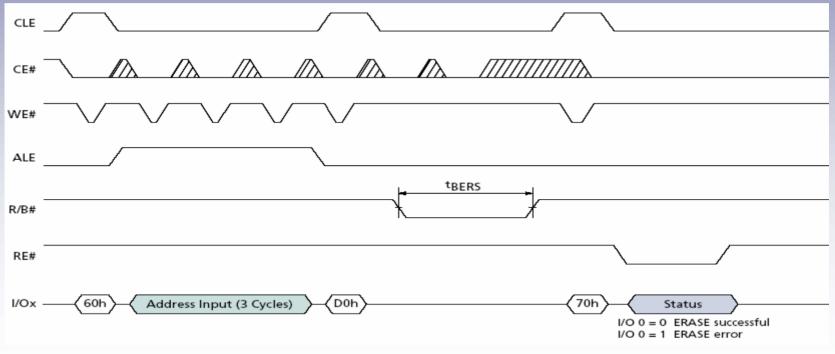
NAND Flash Read Status Results

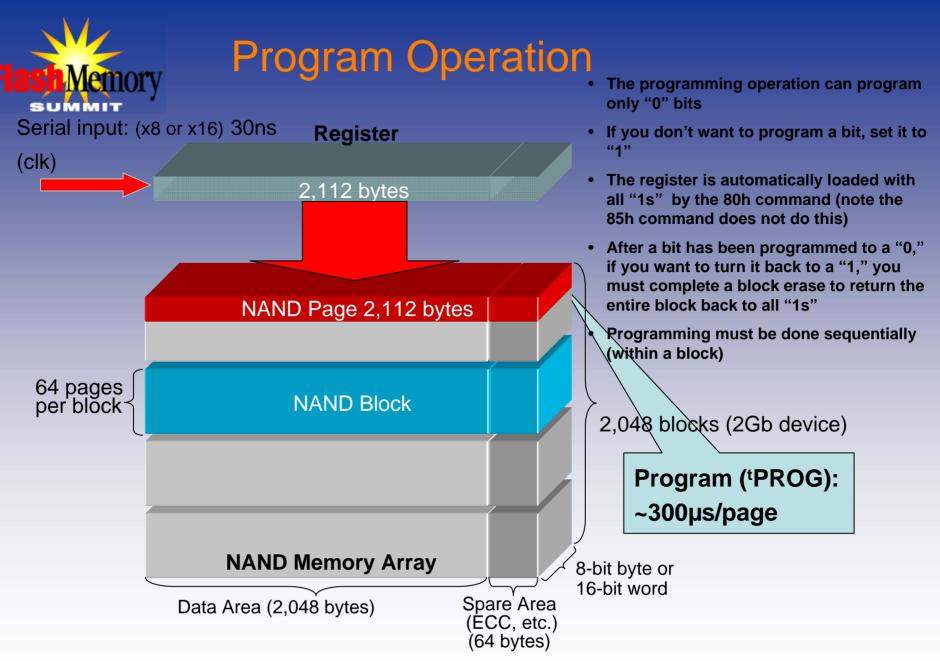
Program Page	Program Page Cache Mode	Page Read	Page Read Cache Mode	Block Erase	Definition
Pass/fail	Pass/fail (N)	-	-	Pass/fail	0 = Successful PROGRAM/ERASE 1 = Error in PROGRAM/ERASE
-	Pass/fail (N-1)	-	-	-	0 = Successful PROGRAM 1 = Error in PROGRAM
-	-	-	-	-	0
-	-	-	-	-	0
-	-	-	-	-	0
Ready/busy	Ready/busy ²	Ready/busy	Ready/busy ²	Ready/busy	0 = Busy 1 = Ready
Ready/busy	Ready/busy cache ³	Ready/busy	Ready/busy cache ³	Ready/busy	0 = Busy 1 = Ready
Write protect	Write protect	Write protect	Write protect	Write protect	0 = Protected 1 = Not protected
	Page Pass/fail - - Ready/busy Ready/busy	PageCache ModePass/failPass/fail (N)-Pass/fail (N-1)Ready/busyReady/busy²Ready/busyReady/busy cache³	PageCache ModePage ReadPass/failPass/fail (N)Pass/fail (N-1)Ready/busyReady/busy²Ready/busyReady/busyReady/busyReady/busyReady/busyReady/busyReady/busy	PageCache ModePage ReadCache ModePass/failPass/fail (N)Pass/fail (N-1)Ready/busyReady/busy²Ready/busyReady/busy²Ready/busyReady/busyReady/busyReady/busycache³Ready/busyReady/busyReady/busy	PageCache ModePage ReadCache ModeBlock ErasePass/failPass/fail (N)Pass/fail-Pass/fail (N-1)Pass/fail (N-1)Ready/busyReady/busy²Ready/busyReady/busy²Ready/busyReady/busyReady/busyReady/busyReady/busyReady/busyReady/busyReady/busyReady/busyReady/busyReady/busy


Read status typically = E0h when the NAND is ready with no error

Block Erase Operation

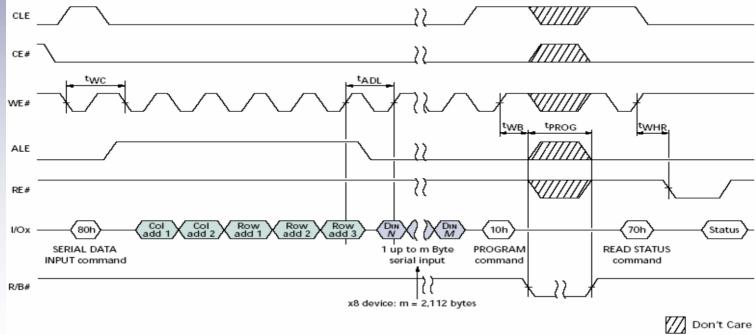
Register


2,112 bytes



Flash Memory

Block Erase Operation


Command	Command Cycle 1	Number of Address Cycles	Data Cycles Required ¹	Command Cycle 2	Valid During Busy
PAGE READ	00h	5	No	30h	No
PAGE READ CACHE MODE START	31h	—	No	—	No
PAGE READ CACHE MODE START LAST	3Fh	—	No	—	No
READ for INTERNAL DATA MOVE	00h	5	No	35h	No
RANDOM DATA READ	05h	2	No	E0h	No
READ ID	90h	1	No	—	No
READ STATUS	70h	—	No	—	Yes
PROGRAM PAGE	80h	5	Yes	10h	No
PROGRAM PAGE CACHE MODE	80h	5	Yes	15h	No
PROGRAM for INTERNAL DATA MOVE	85h	5	Optional	10h	No
RANDOM DATA INPUT	85h	2	Yes	_	No
BLOCK ERASE	60h	3	No	D0h	No
RESET	FFh	—	No	_	Yes

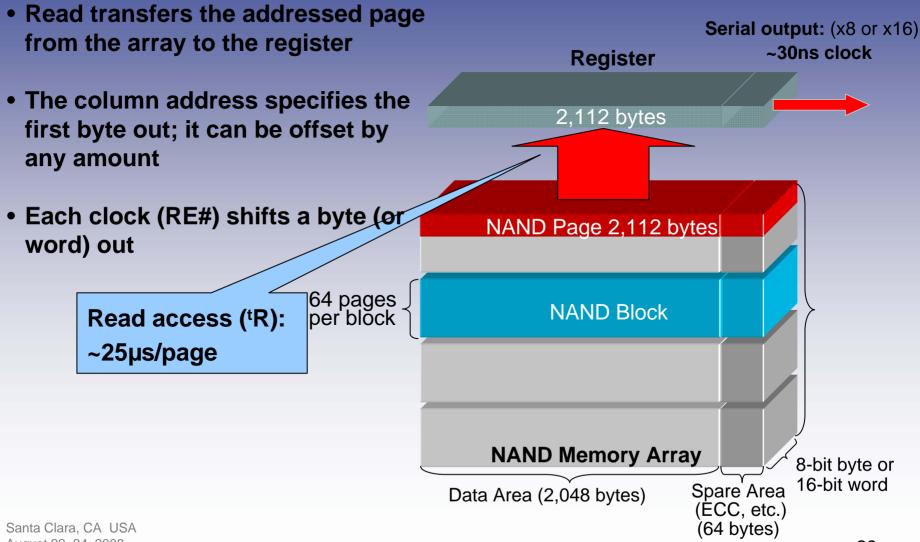
Program Operation

	Command	Command Cycle 1	Number of Address Cycles	Data Cycles Required ¹	Command Cycle 2	Valid During Busy
	PAGE READ	00h	5	No	30h	No
	PAGE READ CACHE MODE START	31h	-	No	-	No
	PAGE READ CACHE MODE START LAST	3Fh	-	No	_	No
	READ for INTERNAL DATA MOVE	00h	5	No	35h	No
	RANDOM DATA READ	05h	2	No	E0h	No
	READ ID	90h	1	No	_	No
	READ STATUS	70h	-	No	_	Yes
	PROGRAM PAGE	80h	5	Yes	10h	No
	PROGRAM PAGE CACHE MODE	80h	5	Yes	15h	No
	PROGRAM for INTERNAL DATA MOVE	85h	5	Optional	10h	No
·	RANDOM DATA INPUT	85h	2	Yes	_	No
	BLOCK ERASE	60h	3	No	D0h	No
	RESET	FFh	-	No	-	Yes
22		///// ///\}				

rv

SUMMIT

Random Data Input/Program The page is programmed when you issue the 10h confirmation. Each You can input as of these counts many address and toward the data combinations as partial-page vou want. programming limit (of 8). CLE CE# AD WBL TPROG ALE RE# V//// DIN Row Row Row I/Ox 85 (70h Status 10h SERIAL DATA RANDOM DATA Column Address ROGRAM READ STATUS INPUT Command Serial Input INPUT Command Serial Input Command Command R/B#


Don't Care

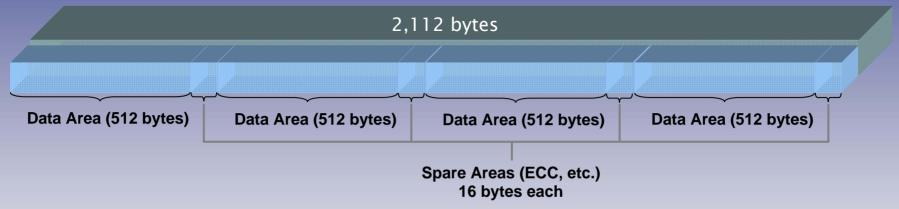
8

<

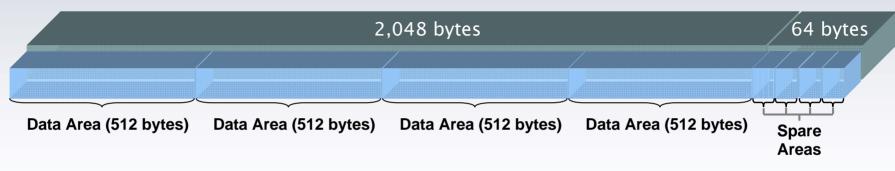
Read Operation

Random Read Operation

- The RANDOM READ command allows you to specify a new two-byte column address
- Can use the RANDOM READ command to jump around anywhere on the page


Partial-Page Programming

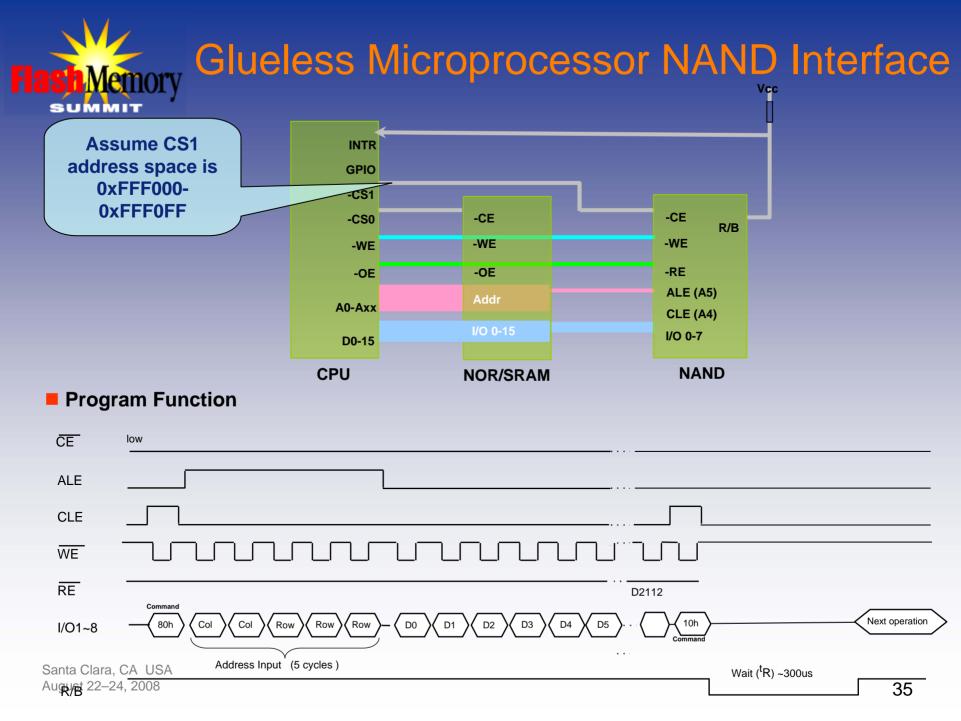
- NOP specifies the number of programming operations that can be executed on the same page
- Pages are programmed in groups due to the large page sizes (SLC only)
 - Typical PC sector size is 512, so four PC sectors fit into one 2K page
 - Programming ECC info separately from the data could require an additional four operations
 - The user can have other info (logical mapping or wear-leveling) in the spare area
- It is best to minimize partial-page programming
 - The number of partial-page program operations is the number of complete programming operations (with confirm 10h) to the same location without an erase
- MLC devices have an NOP of 1



Methods for Data and Spare Information Placement

Data and spare information adjacent

Data and spare information separate

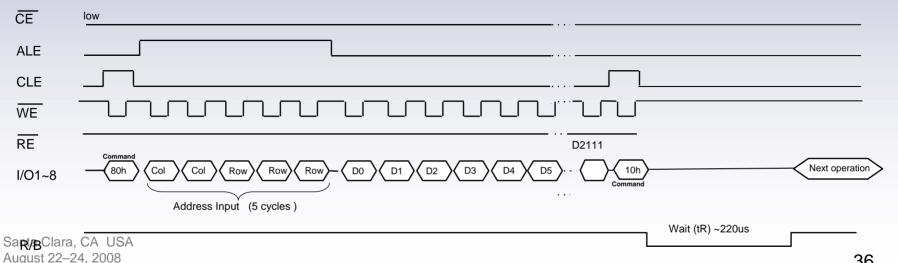

Connecting NAND to a RISC Processor or DSP That Does not Include a NAND Controller

Direct Connection to RISC Processor

Memory Mapped NAND Interface

- If microprocessor address 4 is connected to CLE and address 5 is connected to ALE, the NAND can be accessed by a software that uses only three address locations
 - Command register can be accessed by writing to address XX010h
 - Address register can be accessed by writing to address XX020h
 - Data register can be accessed by writing/reading to address XX000h

	/	47	A6	A5	A4	A3	A	2	A1	A0		
A5	A	\4										
ALE	C	LE	Memory Address Offset						NAND Register Selected			
0		0	0					Data register				
0		1	1						Command register			
1		0	2					Address register				
1		1	3					Undefined (don't use)				

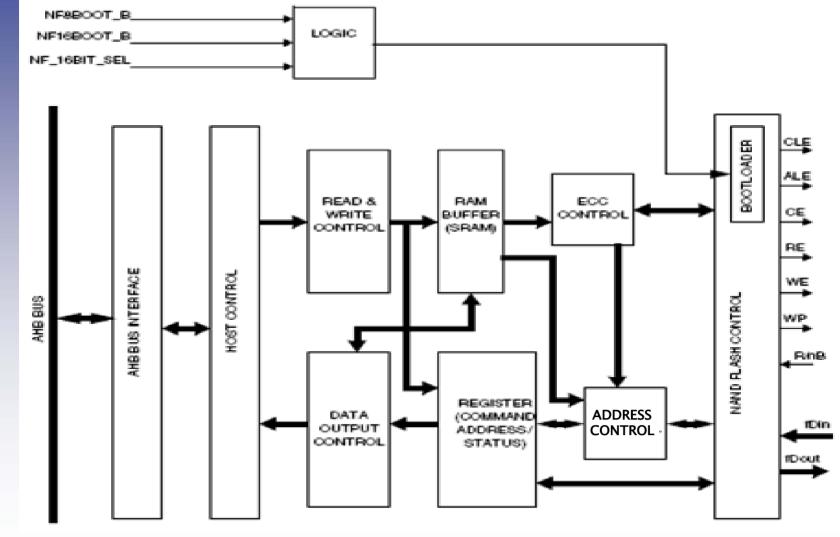


Glueless Microprocessor NAND Interface

SIMUCIIIOIY Pseudo-Code
SUMMIT Example for PROGRAM:
(All numbers in HEX)
80 -> FFF010 ; CMD = 80
ColL -> FFF020 ; low column
ColH -> FFF020 ; high column
RowL -> FFF020 ; low ROW
RowM -> FFF020 ; Mid ROW
RowH -> FFF020 ; High ROW
D0 -> FFF000 ; Data 0
D1 -> FFF000 ; Data 1

(Complete remaining data) D2111 -> FFF000 : Data 2111 10 -> **FFF010** ; CMD = 10LOOP1: $PA \rightarrow Acc$: Read status BIT #6 set ; JMP NZ LOOP1 Jmp if Busy to Loop : ; DONE !

Program Function



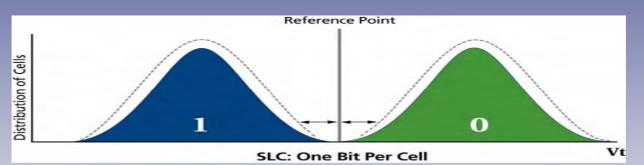
Processor Support

- Processors with native NAND controller built-in with support for 2K page:
 - Motorola i.MX21 and i.MX31 and others
 - TI Omap 2420 and 2430 and others
 - Other vendors are adding direct-NAND interface; check with your vendor

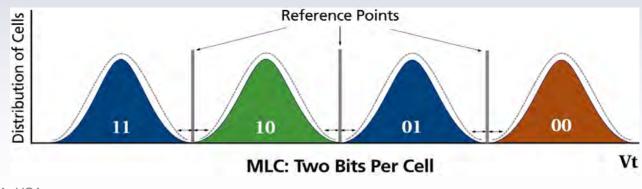
Native NAND Interface on Freescale i.MX21

Santa Clara, CA USA August 22–24, 2008

diagram courtesy Freescale Semiconductor


Single-Level Cell (SLC) vs. Multi-Level Cell (MLC)

Santa Clara, CA USA August 22–24, 2008



What is the Difference?

- SLC (single-level cell)
 - SLC stores <u>2</u> states per memory cell and allows <u>1</u> bit programmed/read per memory cell

- MLC (multi-level cell)
 - MLC NAND stores <u>4</u> states per memory cell and allows <u>2</u> bits programmed/read per memory cell

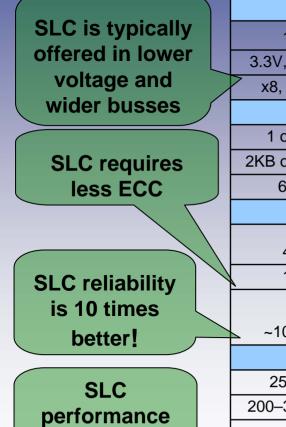
SLC vs. MLC

- SLC NAND Flash products offer higher performance and reliability; typical applications include:
 - High performance media cards
 - Solid state drives (SSDs)
 - Many embedded (NAND built inside) designs including:
 - Cell phones (for executing code); MLC will still be considered for high density storage
- Multi-level cell (MLC) NAND Flash will lead in the lowest cost for consumer applications where performance and reliability are not as important; typical applications include:
 - Media players (audio and video)
 - Cell phones (SLC will still be considered for code execution)
 - Consumer media cards (such as USB, SD/MMC, and CF cards)

SLC Attributes

- Key attributes:
 - Single bit per cell
 - Supports low voltage (1.8V); required for many mobile applications
 - Offered in wide data bus (16 bits) as well as 8-bit
 - Supported by all controllers because SLC generally requires only 1-bit ECC
 - Higher performance
 - Higher reliability

Features	
Bits per cell	1
Voltage	3.3V, 1.8V
Data width (bits)	x8, x16
Architecture	
Number of planes	1 or 2
Page size	2K or 4K bytes
Pages per block	64
Reliability	
NOP (partial-page programming)	4
ECC (per 512 bytes)	1
Endurance (ERASE/PROGRAM cycles)	~100K
Array Operations	
^t R (Max)	25µs
^t PROG (Typ)	200–300µs
^t BERS (Typ)	1.5–2ms


MLC Attributes

- Key attributes:
 - Two bits per cell; twice the density of similar SLC device
 - Offered only in 3.3V
 - Offered only in x8 data bus
 - Supported only by controllers that include 4-bit (or more) ECC
 - Compared to SLC NAND:
 - Lower performance
 - Lower reliability
 - Lower price

Features	
Bits per cell	2
Voltage	3.3V
Data width (bits)	x8
Architecture	
Number of planes	2
Page size	2K or 4K bytes
Pages per block	128
Reliability	
NOP (partial-page programming)	1
ECC (per 512 bytes)	4+
Endurance (ERASE/PROGRAM cycles)	~10K
Array Operations	
^t R (Max)	50µs
^t PROG (Typ)	600–900µs
^t BERS (Typ)	3ms

SLC vs. MLC

SUMMIT						
SUMMIT						
	SLC		MLC			
		Features				
SLC is typically	1	Bits per cell	2			
offered in lower	3.3V, 1.8V	Voltage	3.3V			
voltage and	x8, x16	Data width (bits)	x8			
wider busses	Architecture					
	1 or 2	Number of planes	2			
SLC requires	2KB or 4KB	Page size	2KB or 4KB			
less ECC	64	Pages per block	128			
		Reliability				
	4	NOP (partial-page programming)	1			
SLC reliability	1	ECC (per 528 bytes)	4+			
is 10 times better!	~100K	Endurance (ERASE/PROGRAM cycles)	~10K			
	Array Operations					
SLC	25µs	^t R (Max)	50µs			
performance	200–300µs	^t PROG (Typ)	600–900µs			
is ~3 times	1.5–2ms	^t BERS (Typ)	3ms			
better						

MLC density is 2 times that of similar SLC

Santa Clara, CA USA August 22-24, 2008

4Gb SLC Performance

			(72nm S	LC) 4Gb Pe	erformanc	e			Symbol	Time	Units
									tR	20	us
45.00				38.65					tDCBSYR1	3	us
40.00 -		37.62	00 50	50.05					tDCBSYR2	3	us
35.00 -	00.04		33.50	_					tRC	25	ns
30.00 -	28.94			_					tRC (C)	25	ns
25.00 -									tRC		ns
20.00 -								19.05	tPROG	220	us
15.00 -							12.94		tCBSY	3	us
10.00 -					7.74	9.56			tDBSY	0.5	us
									tWC	25	ns
5.00 -									tWC (C)	25	ns
0.00 +	Page Read	Cache Read	2Plane Page	2Plane Page	Page	Program Pge	2Plane	2Plane	tWC		ns
	raye neau	Caulle Reau	Read	Read Cache	Program	Cache	Program	Program	PS	2112	Byte
				Mode			Page	Page Cache	NP	64	Pages
								Mode			

8Gb MLC Performance

	(72nm MLC) 8Gb Performance	Symbol	Time	Units
45.00 -		tR	50	us
		tDCBSYR1	7	us
40.00 -	37.26	tDCBSYR2	7	us
35.00 -		tRC	25	ns
30.00 -	27.06	tRC (C)	25	ns
25.00		tRC	25	ns
25.00 -	20.51	tPROG	650	us
20.00 -		tCBSY	30	us
15.00 -		tDBSY	0.5	us
10.00 -		tWC	25	ns
	3.00 3.25 5.58 6.49	tWC (C)	25	ns
5.00 -	3.00 3.25	tWC	25	ns
0.00 -		PS	2112	Byte
	Page Read Cache Read 2Plane Page Page Program 2Plane 2Plane	NP	128	Pages
	Mode Page Page Cache Mode			

SLC Requires Less ECC

- While it is possible to implement 1-bit correct (Hamming code) in software, it generally does not provide a high performance solution
- Many microprocessors include NAND controllers that support 1-bit ECC
- Some newer processors are looking to include 4-bit ECC (or more) in their on-chip NAND controllers

SLC vs. MLC Conclusions

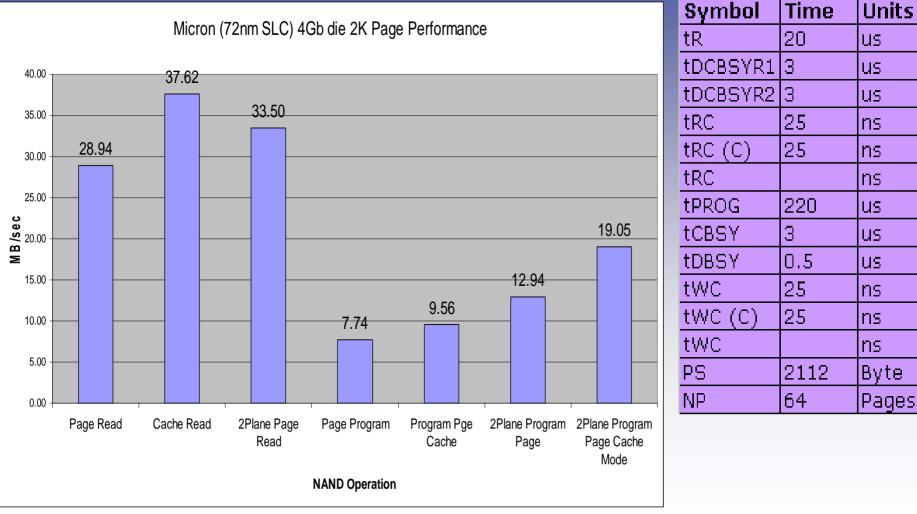
- MLC will always provide the lowest cost per bit
- SLC will always provide the highest performance
- SLC will always provide the highest reliability
- Choose the right NAND device for the application

All NAND Flash Devices Are Not Created Equal

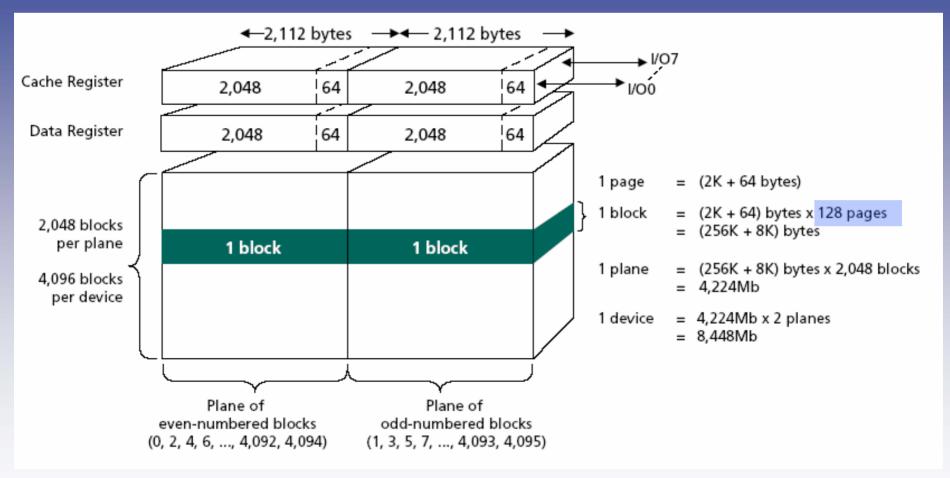
- Differences include:
 - Cell types
 - Architecture
 - Performance
 - Timing parameters
 - Command set
- Open NAND Flash Interface (ONFI) drives a standard interface


Santa Clara, CA USA August 22–24, 2008

Two-Plane Features


- Device is divided into two physical planes, odd/even blocks
- Users have the ability to:
 - · Concurrently access two pages for read
 - Erase two blocks concurrently
 - Program two pages concurrently
- The page addresses of blocks from both planes must be the same during two-plane READ/PROGRAM/ERASE operations

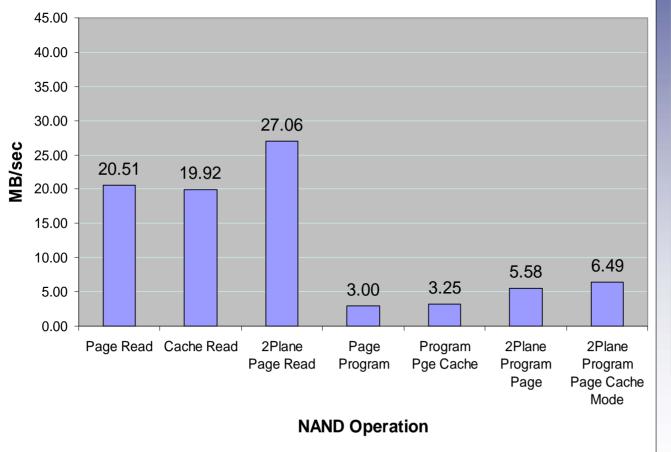
4Gb, Two-Plane, 2K-Page SLC NAND Architecture



4Gb, 2K-Page SLC NAND Performance

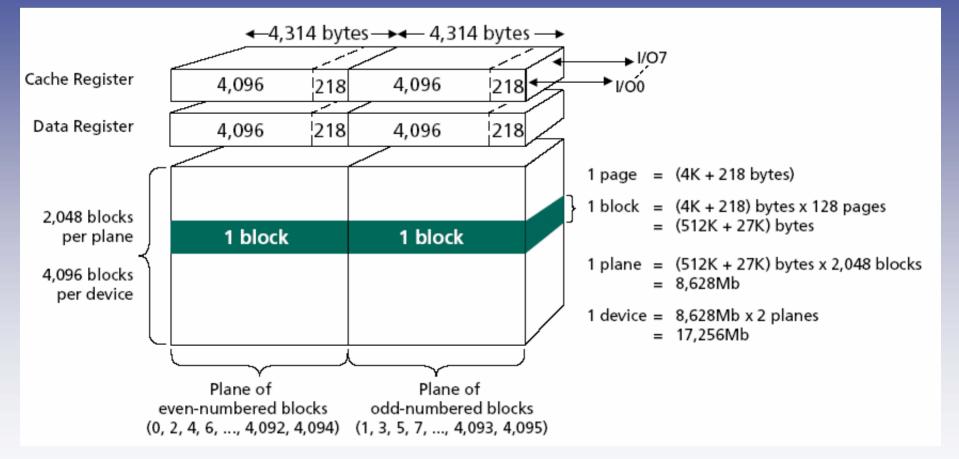
8Gb, Two-Plane, 2K-Page MLC NAND Architecture

Santa Clara, CA USA August 22–24, 2008

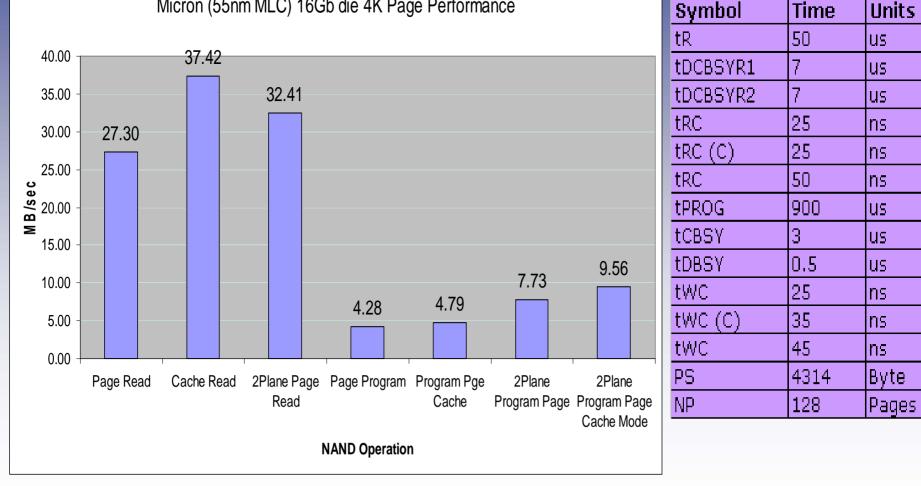

1Memory

SUMMIT

8Gb, 2K-Page MLC Performance


Micron (72nm MLC) 8Gb die 2K Page Performance

Time	Units
50	us
7	us
7	us
25	ns
25	ns
25	ns
650	us
30	us
0.5	us
25	ns
25	ns
25	ns
2112	Byte
128	Pages
	50 7 25 25 25 650 30 0.5 25 25 25 25 2112


16Gb, Two-Plane, 4K-Page MLC NAND Architecture

Two-Plane, 4K-Page MLC NAND **Architecture**

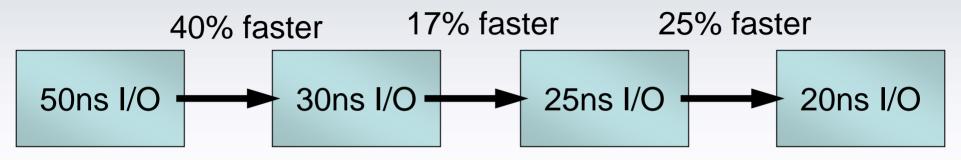
Micron (55nm MLC) 16Gb die 4K Page Performance

Time

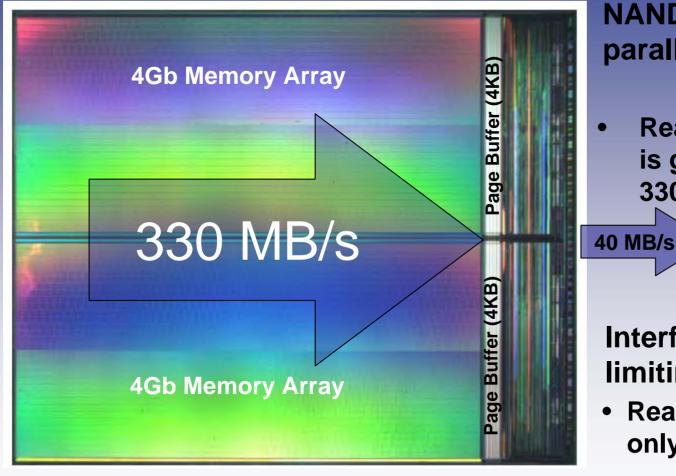
Units

Performance Bottlenecks

Santa Clara, CA USA August 22–24, 2008

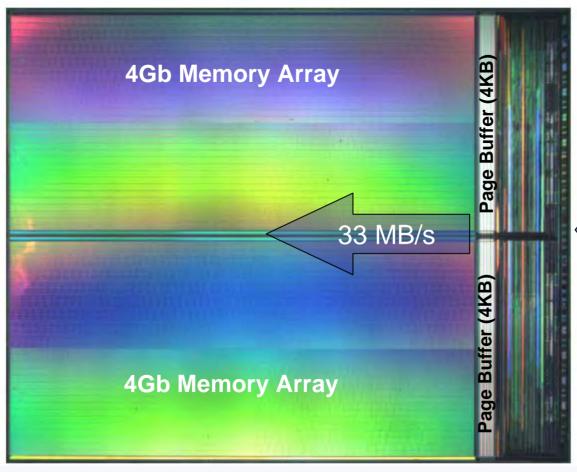

Read Throughput Limitations in NAND Today

- Read throughput limited by I/O frequency
- I/O time for NAND page (tRC = 20ns)
 - 2K page: 42µs
 - 4K page: 86µs
- NAND array read transfer time
 - SLC: tR time is normally 20-25µs MAX
 - MLC: tR time is normally 50µs MAX
- Today for SLC NAND, the I/O time is 2–4x the array transfer time
- I/O performance must be less than or equal to array performance for maximum sustained read throughput


I/O Throughput Cannot Scale

- NAND Flash interface is asynchronous
- NAND timing parameters cannot scale indefinitely to faster speeds
- As tRC decreases, it becomes difficult for controllers to latch data output from the NAND
- As tWC for data input decreases, time to process command and address cycles does not decrease

SLC Read Array/Bus Performance **Mismatch**


NAND array reads are parallel and very fast

Read array bandwidth is greater than 330 MB/s (8KB read in 25µs)

- Interface speed is the limiting factor
- Read bus bandwidth is only 40 MB/s (25µs clock)

SLC Program Array/Bus Performance

Interface speed is no longer the limiting factor

 Bus bandwidth is 40 MB/s (25µs)

40 MB/s

- Program performance is not so impressive
- Array program
 bandwidth is 33 MB/s (8KB programmed in 250µs)

ONFI and High-Speed NAND Introduction

Santa Clara, CA USA August 22–24, 2008

What is ONFI

- ONFI = Open NAND Flash Interface
- Includes NAND vendors, enablers, and customers
- Purpose is to standardize the NAND Flash interface
 - Packages
 - Timing parameters
 - Addressing
 - Command set
 - Device behavior
- Benefits
 - NAND devices self-describe their capabilities to controllers
 - Reduces time to qualify NAND devices at enablers and OEMs

Santa Clara, CA USA August 22–24, 2008

NAND Flash Inconsistencies Without a Standard

- Device identification using read ID
- Array architecture and addressing
- Command set
- Timing parameters
- ECC and endurance
- Factory-marked bad blocks
- Device behavior and status

emory ONFI Technical Philosophy

- ONFI shall ensure no preassociation with NAND Flash at host design is required
 - Flash must self-describe features, capabilities, timings, etc., through a parameter page
 - Features that cannot be self-described in a parameter page (like number of CE#) shall be host discoverable
- ONFI should leverage existing Flash behavior to the extent possible
 - Intent is to enable orderly and TTM transition, so highly divergent behavior from existing NAND undesired
 - Where prudent for longevity or capability need, existing Flash behavior shall be modified or expanded
- ONFI needs to enable future innovation

The NAND Interface Today

- ONFI 1.0 has standardized today's NAND interface
 - Consistent and easier for controller designers to identify and use NAND features
- ONFI 1.0 introduced timing mode 5 for faster I/O throughput
 - New standard for NAND interface performance
 - tRC / tWC = 20ns

Goals of a High-Speed NAND Interface (ONFI 2.0)

- Keep transition to high-speed interface simple
 - Keep and/or redefine original NAND signals to provide high-speed signaling without disrupting the NAND protocol and command set
 - Provide backward compatibility to asynchronous NAND interface to make device identification simple
- Increase I/O throughput with room to grow
 - Remove tRC latching limitation by adding a bidirectional source-synchronous strobe (DQS)
 - Remove tWC command and address cycle limitation by decoupling command and address processing from the data input rate
- Ensure a graceful transition from standard NAND to high-speed NAND

Scalable I/O Performance

- A scalable interface is needed for more than read I/O throughput
- As more NAND devices are added to the bus, it is possible for even slower MLC devices to max the I/O bus bandwidth

• A fast NAND Flash interface is possible by:

- Adding bidirectional source-synchronous DQS
- Providing scalable DDR data I/O interface
- Optimizing the signaling to allow enough time to process command and address cycles
- Minimizing NAND pin capacitance

Key Feature Comparison

Feature	Standard NAND	HS-NAND
"Standard" asynchronous interface	Yes	Yes
Synchronous interface	No	Yes
NAND command protocol	Standard	Standard
tRC	≥ 25ns (SDR)	6ns (DDR)
tWC	≥ 25ns (SDR)	6ns (DDR)
Standardized	ONFI 1.0	ONFI 2.0
Scalable to higher performance	No	Yes
Error correction requirements	2	8
Page size	2KB + 64B	4KB +224B
Block size	64 pages	128 pages
Cache mode	Some	Yes
Vil/Vih and Vol/Voh	CMOS	CMOS
VCCq	3.3V	1.7V to 1.95V
VCC	3.3V	2.7V to 3.6V
Parameter page	Some	Yes
Package Santa Clara, CA USA	TSOP	BGA

A natural extension to standard NAND

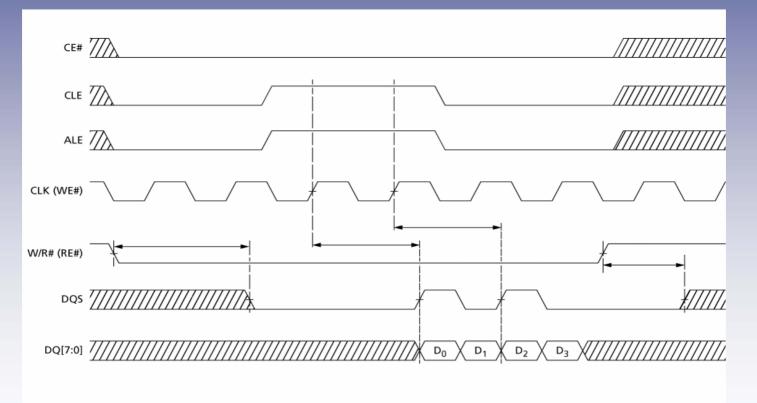
Santa Clara, CA USA August 22–24, 2008

FlashMemory

Memory Backward-Compatible ONFI 2.0 Interface

Asynchronous NAND Interface Synchronous NAND Interface CF# DQS CE# ALE ALE CLE CLE NAND NAND **W/R#** RE# CLK WE# R/B# R/B# WP# WP# I/O[7:0] DQ[7:0]

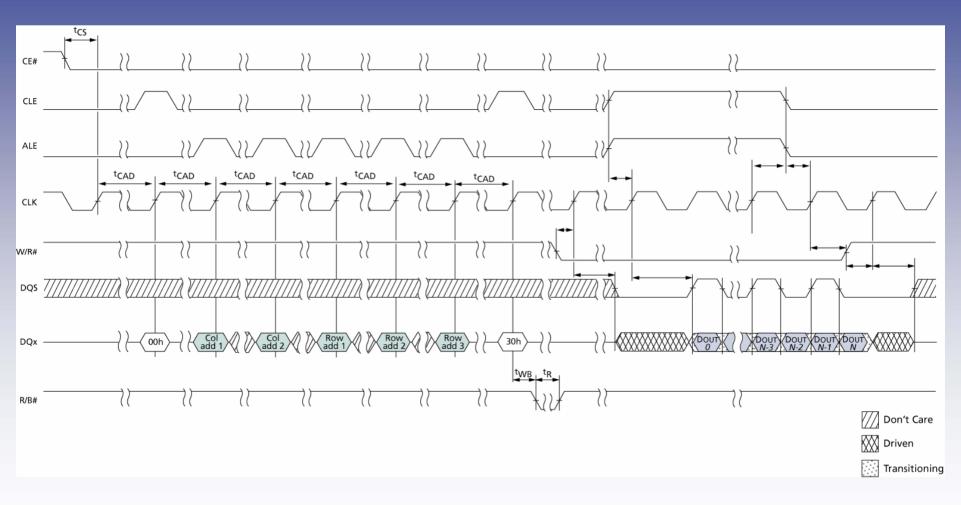
- High-speed-capable NAND Flash devices power on using the asynchronous interface for backward compatibility
- Set features enable source-synchronous interface
- WE# becomes a fast CLK
- RE# handles data direction by becoming W/R# (Write/Read#)
- I/O[7:0] renamed to DQ[7:0] (name change only, functionally identical)
- DQS, a new bidirectional signal, is enabled



High-Speed NAND Signal Description

Signals		
Async	Sync	Description
WE#	CLK	 Free-running and used to latch command and address cycles During idle CLK, may be stopped to save power
RE#	W/R#	 Controls direction of DQ bus and DQS W/R# = "1": Data input W/R# = "0": Data output
	DQS	 During data phase, each DQS rising and falling edge corresponds to a data byte DQS is center-aligned for data input DQS is edge-aligned for data output
ALE/CLE	ALE/CLE	 For synchronous mode: ALE / CLE = "11": Data transfer ALE / CLE = "00": Bus idle

Source-Synchronous Data Output Signaling Example



Don't Care

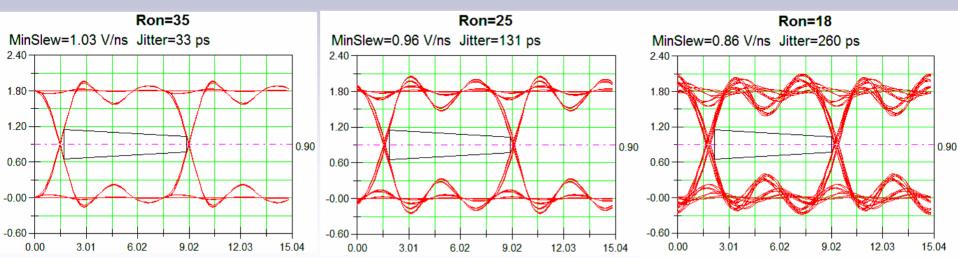
Santa Clara, CA USA August 22–24, 2008

Source-Synchronous Page Read Example

Santa Clara, CA USA August 22–24, 2008

Low-Power Signaling

- As process geometry shrinks, it becomes more difficult for controllers to stay with 3.3V I/O
 - Many applications today use 1.8V signaling
 - Many high-speed interfaces today use smaller voltage swings so signals can transition faster
 - Example: Full-speed USB 12 Mbit/s at 3.3V, High-speed USB 480 Mbit/s at 400mV
- NAND Flash today requires the array and I/O to operate at the same voltage
 - Vcc = 2.7–3.6V
 - Vcc = 1.7–1.95V
- NAND Flash array operations perform best when Vcc > 1.8V, providing faster program, read, and erase times
- By splitting the array voltage (Vcc) from the I/O voltage (VccQ), it is possible to get fast array operations and faster, lower-power I/O signaling
- Potential high-speed voltage configurations
 - Vcc = 2.7–3.6V, VccQ = 2.7–3.6V
 - Vcc = 2.7–3.6V, VccQ = 1.7–1.95V


High-Density Scalability

- By providing multiple output drive strength settings, many NAND devices can share the I/O bus while maintaining I/O throughput
- Example: 133 MT/s data throughput

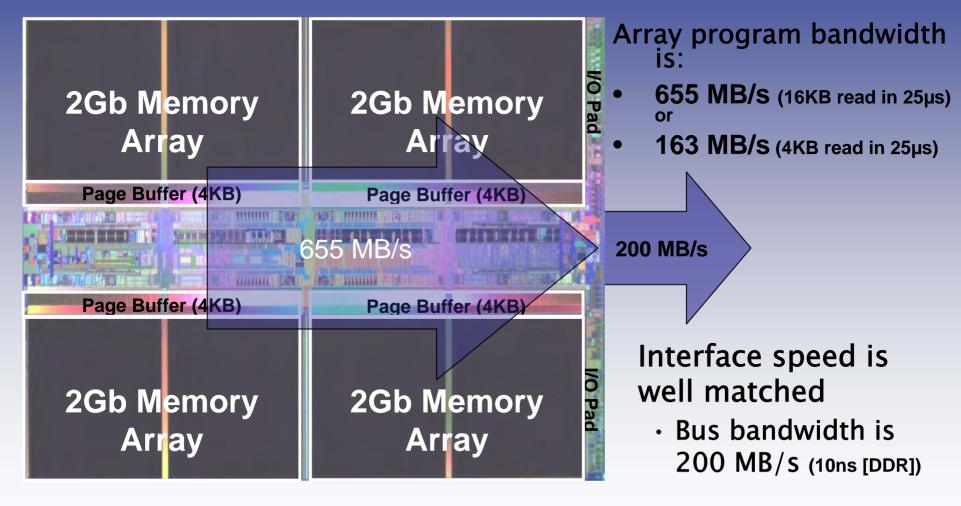
 35Ω driver, 4 NAND die

 25Ω driver, 8 NAND die

 18Ω driver, 16 NAND die

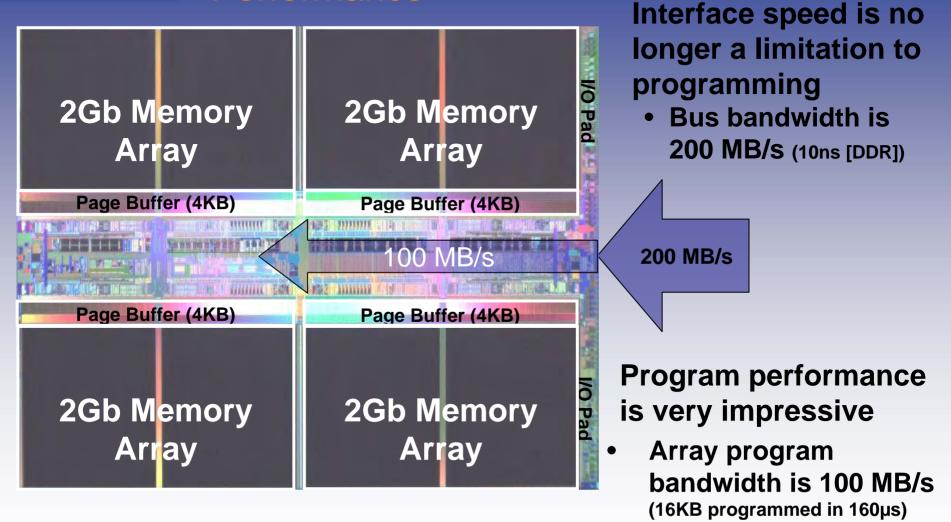
High-Speed NAND Packaging

- High-speed-capable packages receive
 - DQS signal
 - Some Vcc changes to VccQ
 - Some Vss changes to VssQ
- The following packages will be transitioned to high-speed NAND
 - 48-pin TSOP
 - 63-ball BGA

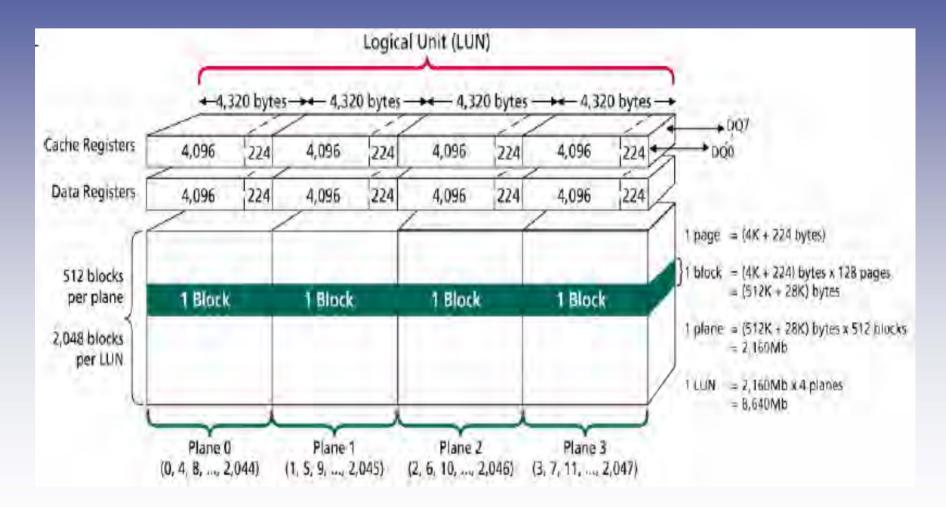


Introducing a New BGA Package

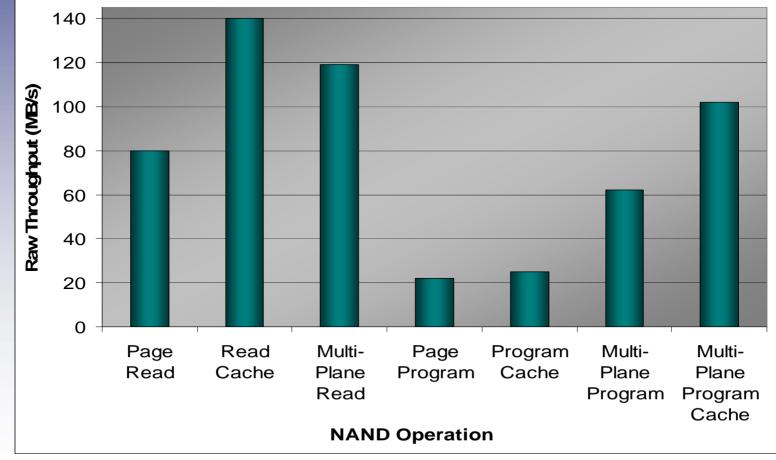
- ONFI 2.0 will introduce a new BGA package
 - Accommodates high-speed and asynchronous-only NAND Flash devices
 - Dual x8 interface
 - More power/ground balls for lower noise
 - Signals arranged for excellent signal integrity
 - Imm ball spacing for low cost PCB assembly
 - Accommodates ever-increasing NAND densities with two package outline options



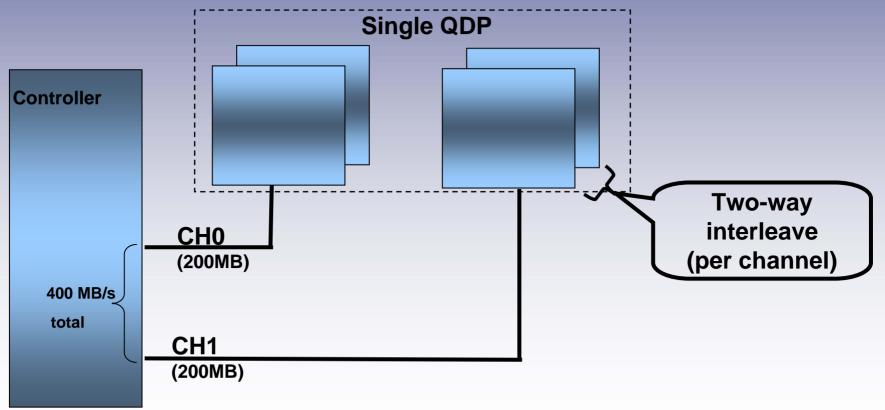
High-Speed NAND Read Array/Bus Performance


High-Speed NAND Program Array/Bus Performance

Santa Clara, CA USA August 22–24, 2008



Four-Plane, 4K-Page, SLC High-Speed NAND Architecture


Four-Plane, 4K-Page SLC NAND Architecture (High-Speed NAND)

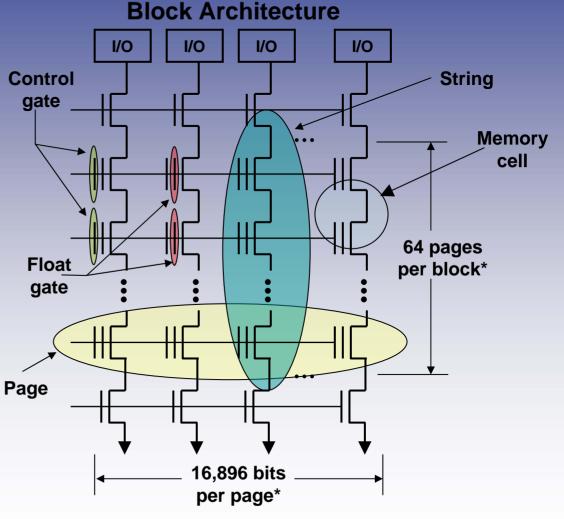
HS-NAND Solution for High Performance

- Micron can achieve 400 MB/s of programming performance using a single HS-NAND package (4 die total)
 - Two channels, two-way interleave (100 MB/s per die)
 - This provides a minimum density of 4GB

Santa Clara, CA USA August 22–24, 2008

ONFI 2.0 Summary

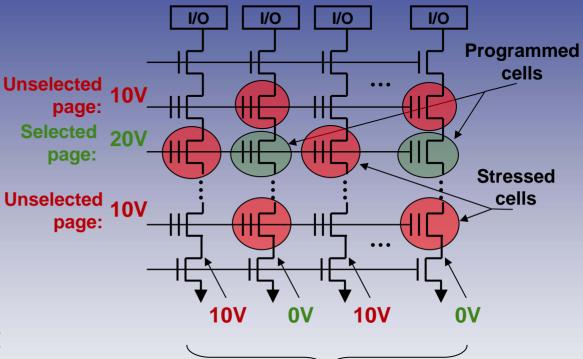
- Fast source-synchronous interface
- Backward compatible with ONFI 1.0
 - Asynchronous interface support
 - ONFI protocol compatible
 - Self-identification of NAND features through parameter page
- Low-power DDR I/O
- Scalability for high-density applications
- New industry standard BGA package
- For more details on ONFI, visit <u>http://www.onfi.org/</u>


NAND Error Modes

- Program disturb
- Read disturb
- Data retention
- Endurance

Let's Get Orientated

- NAND architecture is based on independent blocks
- Blocks are the smallest erasable units
- Pages are the smallest programmable units
 - Partial pages can be programmed in some devices


* Typical for 4Gb SLC

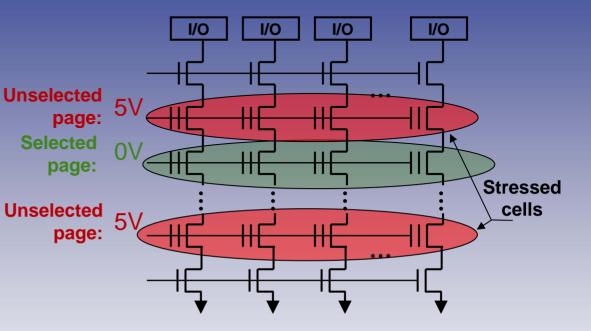
Program Disturb

- Cells not being programmed receive elevated voltage stress
- Stressed cells
 - Are always in the block being programmed
 - Either can be on pages not pages selected or in a selected page, but not supposed to Unsele be programmed
- Charge collects on the floating gate causing the cell to appear to be weakly programmed
- Does not damage cells; ERASE returns cells to undisturbed levels
- Disturbed bits are effectively managed with error correction codes (ECC)
- Partial-page programming accelerates disturbance

Santa Clara, CA USA August 22–24, 2008

Strings being programmed are grounded; others are at 10V

Note: Circuit structures and voltages are representative only. Details vary by manufacturer and technology node.

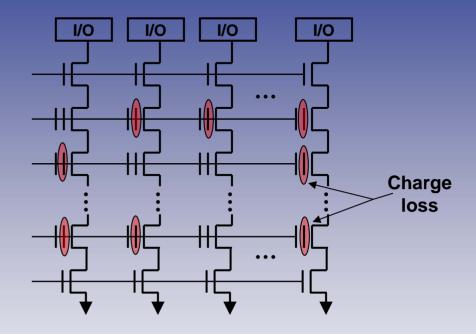

Reducing Program Disturb

- Program pages in a block sequentially, from page 0 to page 63 (SLC) or 127 (MLC)
- Minimize partial-page programming operations (SLC)
- It is mandatory to restrict page programming to a single operation (MLC)
- Use ECC to recover from program disturb errors

Read Disturb

- Cells not being read receive elevated voltage stress
- Stressed cells are
 - Always in the block being read
 - Always on pages not being read
- Charge collects on the floating gate causing the cell to appear to be weakly programmed
- Does not damage cells; ERASE returns cells to undisturbed levels
- Disturbed bits are effectively managed with ECC

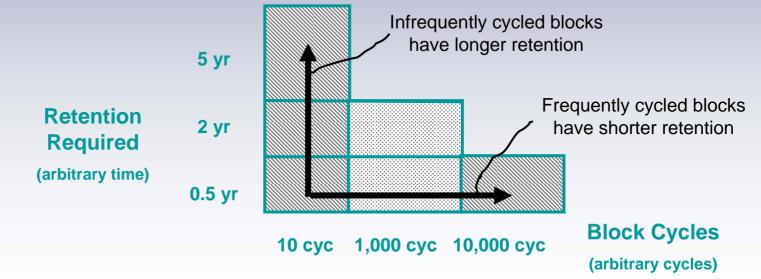
Note: Circuit structures and voltages are representative only. Details vary by manufacturer and technology node.


Reducing Read Disturb

- Rule of thumb for excessive reads per block between ERASE operations
 - SLC 1,000,000 READ cycles
 - MLC 100,000 READ cycles
- If possible, read equally from pages within the block
- If exceeding the rule-of-thumb cycle count, then move the block to another location and erase the original block
- Establish ECC threshold to move data
- Erase resets the READ DISTURB cycle count
- Use ECC to recover from read disturb errors

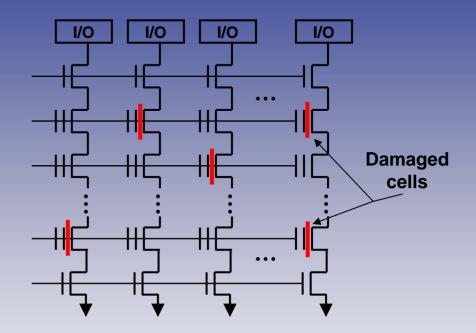
Data Retention

- Charge loss/gain occurs on the floating gate over time; device threshold voltage trends to a quiescent level
- Cell is undamaged; block can be reliably erased and reprogrammed



Note: Circuit structures and voltages are representative only. Details vary by manufacturer and technology node.

Improving Data Retention


- Limit PROGRAM/ERASE cycles in blocks that require long retention
- Limit READs to reduce read disturb
- Review JEDEC (JESD47) standard

Endurance

- PROGRAM/ERASE cycles cause charge to be trapped in the dielectric
- Causes a permanent shift in cell characteristics not recovered by erase
- Observed as failed program or erase status
- Blocks that fail should be retired (marked as bad and no longer used)

Note: Circuit structures and voltages are representative only. Details vary by manufacturer and technology node.

Endurance Recommendations

- Always check pass/fail status (SR0) for PROGRAM and ERASE operations
 - Note: READ operations do not set SR0 to fail status
- If fail status after PROGRAM, move all block data to an available block and mark the failed block bad
- Use ECC to recover from errors
- Write data equally to all good blocks (wear-leveling)
- Protect block management/meta data in spare area with ECC

Wear-Leveling

- Wear-leveling is a plus on SLC devices where blocks can support up to 100,000 PROGRAM/ ERASE cycles
- Wear-leveling is imperative on MLC devices where blocks typically support fewer than 10,000 cycles
- If a block was erased and reprogrammed every minute, the 10,000 cycling limit would be exceeded in just 7 days!

60 x 24 x 7 = 10,080

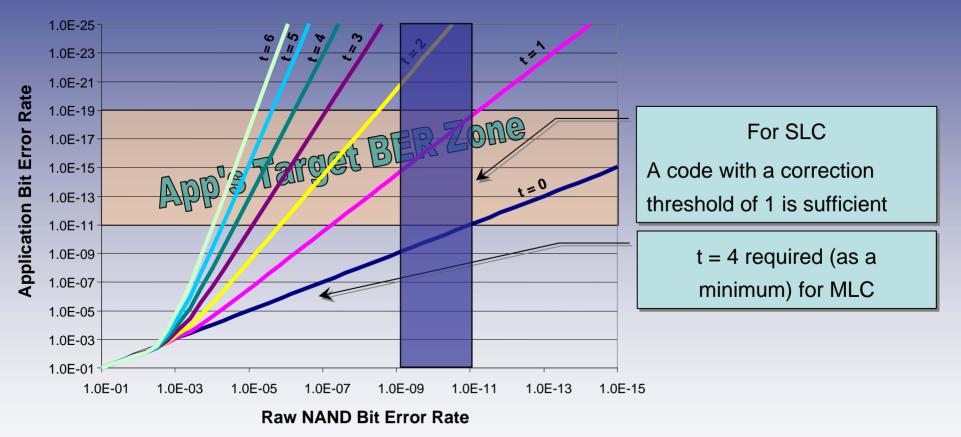
 Rather than cycling the same block, wear-leveling involves distributing the number of blocks that are cycled

Wear-Leveling (continued)

- An 8Gb MLC device contains 4,096 independent blocks
- Using the previous example, if the cycles were distributed over 4,096 blocks, each block would be programmed fewer than 3 times (vs. 10,800 cycles if the same block is cycled)
- If perfect wear-leveling was performed on a 4,096-block device, a block could be erased and programmed every minute, every day for 77 years!

10,000 x 4,096	40,960,000	= 28,444 days = 77.9 years
60 x 24	1,440	= 20,444 days = 11.3 years

Consider static vs. dynamic wear-leveling



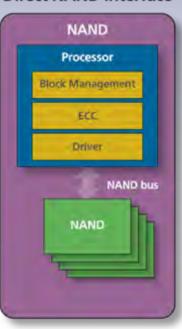
ECC Can Fix Everything (well, almost)

- Understand the target data error rate for your particular system
- Understand the use model that you intend for your system
- Design the ECC circuit to improve the raw bit error rate (BER) of the NAND Flash, under your use conditions, to meet the system's target BER

ECC Code Selection is Becoming Even More Important

 As the raw NAND Flash BER increases, it becomes more important to match the ECC to the application's target BER

Another Option: *e*-MMC[™] Embedded Memory


- The complexities of future MLC require increased attention; the ECC algorithm, for example, is becoming more and more complex, moving from 4+ bits to 8+ bits in the future
- A managed interface addresses the complexities of current and future NAND Flash devices; this means the host does not need to know the details of NAND Flash block sizes, page sizes, planes, new features, process generation, MLC vs. SLC, wear-leveling, ECC requirements, etc.
- e-MMC[™] embedded memory is the next logical step in the NAND Flash evolution for embedded applications because it turns a program/ erase/read device with bad blocks and bad bits (NAND Flash) into a simple write/read memory

Micron Solution: e-MMC Embedded Memory (Managed NAND)

- MLC NAND + MMC 4.3 controller in one device
- High-speed solution:
 - Host selectable x1, x4, and x8 I/Os
 - 52 MHz clock speed (MAX) 416 Mb/s data rate (MAX)
- Fully backward compatible with previous MMC systems
- ECC, wear-leveling, and block management (built in)

Santa Clara, CA USA August 22–24, 2008

Direct NAND Interface

Managed NAND

Error Mode Conclusions

- NAND Flash is the lowest cost, nonvolatile memory available today
- Complexities of MLC NAND require increased hardware and software design
- All these complexities are addressed through the use of the controller included with eMMC embedded memory

Reference Material

Micron presentations and webinars:

http://NAND.com

- Micron documentation (specifications, technical notes, and FAQs): <u>http://www.micron.com/products/nand/</u>
- The Error Correcting Codes (ECC) Page: <u>http://www.eccpage.com/</u>
- Standards
 - MultiMediaCard Association (MMCA): <u>http://www.mmca.org/</u>
 - JEDEC: <u>http://www.jedec.org/</u>
 - Open NAND Flash Interface (ONFI) Workgroup: <u>http://www.onfi.org/</u>
 - SD Card Association (SDA): <u>http://www.sdcard.org/</u>

Thank You

©2008 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Santa Clara, CA USA August 22–24, 2008