

HLNAND: A New Standard for High Performance Flash Memory

Peter Gillingham MOSAID Technologies Inc. gillingham@mosaid.com

Santa Clara, CA USA August 2008

- Address performance and density requirements of Solid State Drive (SSD)
- Cost effectively serve lower end applications

- Defacto standard for asynchronous NAND Flash established by Toshiba in the early 1990's
- ONFI 1.0 formal standard for asynchronous NAND Flash resolving incompatibilities among suppliers
- ONFI 2.0 evolutionary standard adding source synchronous DDR up to 133MB/s
- HyperLink NAND (HLNAND[™]) synchronous DDR ring topology introduced by MOSAID
- RamLink IEEE standard published in 1996 for DRAM main memory using ring topology

Memory Interface Comparison

FlashMemory

Conventional NAND Flash Interface

- 8 bit, bidirectional, multi-drop bus
- Asynchronous LVTTL signaling up to 40Mb/s/pin
- Speed degradation with more than 4 devices on bus
- Chip Enable (CE) signal required for each device
- Power hungry 3.3V I/O

- Unidirectional, point-to-point, daisy-chain cascade supporting as many as 255 devices in a ring
- No bandwidth degradation with additional devices
- Device address assigned on initialization
- High speed DDR signaling up to 800Mb/s/pin
- Dynamic link width programmable from 1 to 8 bits
- Low Power 1.8V I/O

- HyperLink interface can be applied to any device
 - SLC NAND, MLC NAND, NOR, PRAM, DRAM etc.
 - self identified via configuration registers on power up
- Two modes of operation
 - HL1 supporting speeds up to 266Mb/s/pin
 - parallel distributed clock no PLL required
 - LVCMOS signaling
 - HL2 supporting speeds up to 800Mb/s/pin
 - Source synchronous clocking a PLL is required
 - HSTL Class1 signaling matched output driver no termination required - zero static power
 - Single device supports both modes by sensing Vref pin
 - Optional Vpp supply pin for die cost/power reduction

- Once packet reaches addressed device the write data payload is truncated
- Simultaneous data transfer possible if write device is upstream of read device

- Bandwidth
 - Point-to-point signaling extends to much higher data-rates than multi-drop bus
- Power
 - No termination resistors required
 - Point-to-point I/O drivers are much smaller than multi-drop bus drivers and have significantly lower capacitance
 - Packet truncation at destination device reduces power
- Scalability
 - Up to 255 devices in a single ring

DDR signaling up to 266MB/s, no PLL required

No changes to existing Flash process

- CSI/CSO Command and write data Strobe Input/Output
- DSI/DSO read Data Strobe Input/Output
- Data bursts can be interrupted by terminating CSI/DSI

Santa Clara, CA USA August 2008

- Source synchronous DDR to 800MB/s with on-chip PLL
- May require improvement to I/O transistor performance
- Fully backward compatible to HL1

Santa Clara, CA USA August 2008

- Fully independent banks
 - Launch any operation (read, program, erase) in one bank regardless of activity in other bank(s)
- Flexible plane operations
 - Variable page size (eg. 2KB, 4KB, 6KB, or 8KB) for read and program operations in one bank
- Page-Pair Erase and Random Page Program in SLC, Partial Block Erase in SLC and MLC
 - Using novel, low stress program scheme
 - More closely match erase and program data size, eliminating un-necessary block copy and garbage collection, improving performance and endurance

HLNAND Instructions

Operation	1 st Byte	2 nd Byte	3 rd Byte	4 th Byte	5 th Byte	6 th Byte	7 th Byte	8 th Byte	 2116 th Byte
Page Read	DA	0Xh	RA	RA	RA				
Page Read for Copy	DA	1Xh	RA	RA	RA				
Burst Data Read	DA	2Xh	CA	CA					
Burst Data Load Start	DA	4Xh	CA	CA	DATA	DATA	DATA	DATA	 DATA
Burst Data Load	DA	5Xh	CA	CA	DATA	DATA	DATA	DATA	 DATA
Page Program	DA	6Xh	RA	RA	RA				
Block Erase Address Input	DA	8Xh	RA	RA	RA				
Page-Pair Erase Address Input	DA	9Xh	RA	RA	RA				
Erase	DA	AXh							
Operation Abort	DA	CXh							
Read Status Register	DA	F0h							
Read Device Information Register	DA	F4h							
Read Link Configuration Register	DA	F7h							
Write Link Configuration Register	FF	FFh	DATA						

DA = Device Address, CA = Column Address, RA = Row Address, X = Bank Number

- Available at hlnand.com
 - Architectural Specification
 - Datasheets
 - White papers
 - Technical papers
 - Verilog Behavioral model

- DIMM module using DRAM and FPGA fully emulates 200MB/s HLNAND Flash device
- Available to controller and end product manufacturers for system development and benchmarking

- First generation product using conventional NAND KGD
- Small bridge chip provides HyperLink interface
- Significant performance, density, and power benefits

- MOSAID is developing HLNAND for licensing to semiconductor and system manufacturers
- MOSAID is an active member of JEDEC promoting Flash standardization
- HLNAND MCP based on conventional NAND Flash will be available first to serve enterprise applications
- Monolithic HLNAND providing further performance and power advantages will cost-effectively address all applications
- Unleash the full potential of Flash technology with HLNAND