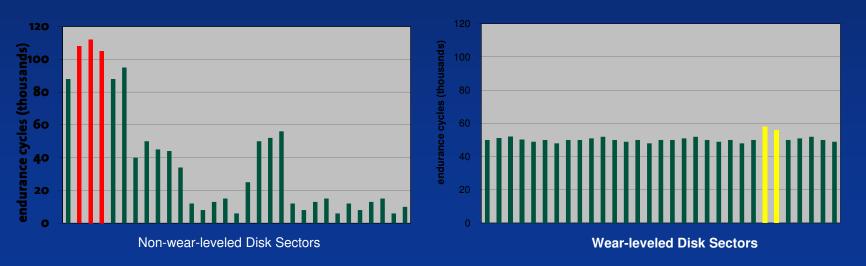


# Using the Appropriate Wear Leveling to Extend Product Lifespan

Presented by: Keith Garvin Product Architect, Datalight






Impact of Increasing Density on Flash Life

- Dynamic vs. Static Wear Leveling
- Other Considerations
- Conclusions






Wear leveling: a set of algorithms that attempt to maximize the lifetime of flash memory by evening out the use of individual cells.













## Largely inherent in any flash file system

- Overwrites are error prone or not allowed
- Writes to NAND must be sequential

## Effectiveness is based on application use case

- How much data is unchanged?
- Only works on areas of flash which are frequently updated
- Static data therefore reduces life of the flash





## Static Wear Leveling Considers Entire Flash Media

- Does not happen automatically, software must purposely evaluate untouched areas
- Effective regardless of use case
  - Static data reduces writeable flash area
  - Overly aggressive implementation can actually reduce flash life.





- Both approaches are required for an effective wear leveling solution.
- Dynamic is low effort and reduces the complexity of static implementations
- Static ensures that media life is maximized



A Dynamic vs Both Case Study

|   |     | -    |      | 1.00 | -    |      |      |      | . Call | 141  | - 242 | -    |      | 14   | 100  | 1.00 | 10000 | -   |
|---|-----|------|------|------|------|------|------|------|--------|------|-------|------|------|------|------|------|-------|-----|
|   | 56  | 5504 | 17   | 1    | 103  | 1    | 57   | 1    | 75     | 1    | 60    | 5440 | 1    | 1    | 74   | 1    | 2252  |     |
|   | 488 | 1    | 5472 | 1    | 5235 | 5339 | 1    | 1    | 5389   | 1    | 23    | 5455 | 1    | 5353 | 1    | 39   | 2171  |     |
|   | 27  | 1    | 52   | 1    | 151  | 47   | 1    | 95   | 4      | 27   | 81    | 65   | 1    | 62   | 1    | 5496 | 2302  | 164 |
| 5 | 463 | 1    | 5413 | 1    | 156  | 5362 | 1    | 5583 | 1      | 5387 | 69    | 1    | 5403 | 1    | 253  | 1    | 1702  | 176 |
| 5 | 534 | 1    | 5410 | 1    | 1    | 154  | 64   | 1    | 5404   | 1    | 72    | 3    | 63   | 5429 | 1    | 77   | 1812  | 223 |
|   | 13  | 1    | 1    | 46   | 5469 | 1    | 1    | 43   | 4      | 66   | 1     | 5375 | 1    | 16   | 5481 | 1    | 2167  | 154 |
|   | 1   | 136  | 1    | 23   | 1    | 169  | 1    | 5436 | 1      | 5420 | 5291  | 1    | 7    | 1    | 5205 | 5338 | 1530  | 154 |
|   | 1   | 2    | 92   | 172  | 5431 | 121  | 5480 | 139  | 305    | 1    | 41    | 242  | ì    | 32   | 172  | 39   | 2161  | 167 |
| 5 | 412 | 5186 | É.   | 38   | 91   | 5407 | 88   | 32   | 126    | 112  | 5313  | 32   | 47   | 2    | 23   | ī    | 2194  | 160 |
|   | 1   | 1    | 1    | 837  | 1    | 1    | 1    | 1    | 87     | 5355 | 5359  | 1    | 1    | 4    | 1    | 1    | 1884  | 153 |
|   | 1   | 155  | 5352 | 1    | 1    | 1    | 1    | 40   | 1      | 2    | 1     | 1    | 99   | 1    | 1    | 1    | 1638  | 217 |
|   | 2   | 39   | 1    | 26   | 5265 | 1    | 111  | 1    | 26     | 5401 | 1     | 1    | 35   | 1    | 38   | 1    | 2164  | 213 |
|   | 22  | 51   | 1    | 5291 | 1    | 32   | 5490 | r    | 55     | 1    | 40    | 1    | 100  | -1   | 52   | 1    | 1540  | 173 |
|   | 70  | 5404 | 1    | 554  | 1    | 5264 | 5374 | 1    | 121    | 1    | 5321  | 5348 | 1    | 84   | 1    | 115  | 1652  | 219 |
| 5 | 457 | à.   | 1    | 147  | 1    | 5347 | 1    | 312  | 1      | 5369 | 230   | 1    | 1    | 42   | 1    | 104  | 1776  | 187 |
|   | 1   | 5332 | 1    | 5399 | 140  | 1    | 5418 | 1    | 5619   | 1    | 1     | 177  | 4    | 1    | 5424 | 1    | 2250  | 150 |
| 4 | 246 | 1    | 288  | 1    | 1    | 5466 | 82   | 1    | 2      | 1    | 5339  | 29   | 1    | 5451 | 1    | 144  | 1654  | 167 |
| 5 | 377 | 1    | 5318 | 1    | 154  | 5097 | 1    | 10   | 1      | 5314 | 5371  | 1    | 1    | 5462 | 4    | 243  | 1607  | 188 |
|   | 169 | 1    | 116  | 1    | 5364 | 20   | 1    | 3    | 1      | 14   | 364   | 238  | 1    | 5330 | 64   | 1    | 2258  | 219 |
| 5 | 528 | 1    | 5384 | 5410 | 1    | 1    | 5350 | ï    | 5371   | 1    | 191   | 1    | 5518 | 5535 | 1    | 1    | 2061  | 213 |
|   | 61  | 1    | 61   | 1    | 5348 | 5321 | 1    | 143  | 1      | 128  | 1     | 5339 | 1    | 1    | 5391 | 323  | 2406  | 207 |
|   | 1   | 5396 | 1    | 61   | 1    | 5371 | 5342 | 5485 | 5428   | 1    | 5495  | 1    | 114  | 5305 | 1    | 5310 | 2208  | 226 |
|   | 1   | 5491 | 42   | 1    | 60   | 1    | 89   | 44   | 1      | 5438 | 1     | 1    | 5357 | z    | 1    | 67   | 2173  | 221 |
|   | 1   | 5328 | 5383 | 1    | 5431 | 1    | 48   | 37   | 1      | 5460 | 1     | 5336 | 1378 | 1    | 8    | 1    | 1555  | 220 |
|   | 65  | 1    | 5427 | 1    | 2    | 1    | 1    | 5366 | 105    | 1    | 15    | 1    | 9    | 17   | 79   | 192  | 2190  | 222 |
|   | 1   | 78   | 77   | 1    | 5339 | 1    | 178  | 1    | 5387   | 1    | 3     | 5347 | 1    | 1    | 133  | 1    | 1871  | 218 |
|   | 26  | 1    | 5455 | 65   | 33   | 5401 | 1    | 5446 | 1      | 69   | 1     | 331  | 57   | 1    | 40   | 1    | 2146  | 153 |
|   | 10  | 35   | 1    | 5324 | 1    | 60   | 5319 | 1    | 70     | 1    | 32    | 72   | 214  | 1    | 5511 | 1    | 2060  | 158 |
|   | 55  | 5379 | 117  | 73   | 53   | z    | 5436 | £    | 737    | 1    | 5488  | 135  | 1    | 5405 | 1    | 1    | 1721  | 193 |
|   | 183 | 85   | 1    | 167  | 1    | 103  | 1    | 57   | 1      | 1    | 51    | 123  | 1    | 5    | 5396 | 5399 | 1756  | 208 |
|   | 62  | 5564 | 73   | 114  | 1    | 18   | 5257 | 74   | 93     | 80   | 1     | 90   | 99   | 5386 | 5404 | 5402 | 1548  | 216 |

**Dynamic Only** 

Dynamic + Static



Santa Clara, CA USA August 2008

SUM



## Static Wear Leveling

- Distributing writes across the media reduces read and write performance
- Does not recover writeable space
- Statistical implementations may not handle certain use cases or break down entirely





#### Excessive reads introduce errors too!

- Bit disturb errors may go undetected
- Aggressive algorithms may increase error rates
- Wear level operations should be bounded
  - Impacts to performance must be low.
  - Take advantage of idle time if possible.





- Wrong wear leveling algorithm will shorten product life
- High density SLC and MLC NAND makes it a critical component.
- Important to use both static and dynamic together
- Ensure the implementation meets application needs in performance and reliability

