

Reverse Engineering Techniques in CMOS Based Non-Volatile Memory (NVM)

EMBEDDED SRAM & NVM | LOGIC LIBRARIES | EMBEDDED T&R | MEMORY DEVELOPMENT SW | INTERFACE IP

Agenda

- Applications Requiring Standard CMOS NVM
- Technology Comparison
 - Floating Gates
 - Antifuse / Oxide Rupture
- Sample Preparation
- Reverse Engineering Techniques
 - Physical Inspection
 - Electrical Inspection
- Conclusions

Standard CMOS NVM

Markets & Applications

Wireless / RF

Uses

- Configuration settings
- EEPROM replacement
- Customer settings (i.e. volume)

Markets

- 802.11
- BlueTooth
- Zigbee
- GPS
- RFID

CMOS NVM

<u>Analog</u>

Uses

- Post package trim
- Fuse replacement
- In-field calibration

Markets

- Precision analog (i.e. ADCs)
- Silicon Clocks
- MEMS pressure sensors
- Accelerometers / gyroscopes

Security / Encryption

Uses

- Encryption keys
- Counters

Markets

- Flash controllers
- Hard disk drives
- Home entertainment devices (HDMI)
- · Digital content devices

High Reliability

<u>Uses</u>

- Real time status and control
- Configuration settings

Markets

- Power management
- Automotive
- Military

Standard CMOS NVM

Technology Comparison

Polysilicon Gate
Gate Oxide (SiO₂)
Silicon Substrate

Floating Gate

- Similar to Flash / EEPROM technology
- Charge added / subtracted using tunneling or injection
- Multiple time programmable capability
- Data is read based on Vt shift of device

Antifuse

- Also called oxide rupture
- Microscopic damage done to gate oxide due to overstress
- One time programmable only
- Data is read based on leakage of programmed vs. unprogrammed cells

Reverse Engineering CMOS NVM Sample Preparation

- Both technologies target deprocessing down to the polysilicon layer for any electrical techniques
- Floating gates
 - No plasma etch steps allowed during reprocessing
 - Any charged particles may disturb the state of the floating gate
 - Only wet etch is allowed
 - Deprocessing to the polysilicon exposes the charge storage layer
- Antifuse
 - Immune to most deprocessing techniques
 - Data does not get compromised / disturbed easily
 - Some techniques may require deprocessing all the way to the gate oxide layer

Reverse Engineering CMOS NVM Physical Inspection

- Standard physical inspection (cross section / top level) does not work for either technology
 - Floating gates leave no physical imprint on the silicon
 - Antifuse damage is too small / localized to be found effectively

Reverse Engineering CMOS NVM Physical Inspection

- Antifuse effects may be made more visible through chemical enhancement
 - Similar to FA techniques used to identify oxide defects (i.e. pinholes)
 - Silicon selective etching will remove the polysilicon as well as expose where the silicon filament penetrated the gate oxide to create the leakage path

Reverse Engineering CMOS NVM Electrical Inspection of Floating Gates

- Theoretically floating gate states can be identified with SEM or FIB based voltage contrast
 - Voltage and spatial resolution are within current technology limits
- The act of measuring disturbs the contents of the floating gate
 - Bombarding the floating gate with charged particles can change the state

Reverse Engineering CMOS NVM Electrical Inspection of Antifuse Technology

- Voltage contrast can be used to determine the contents of antifuse technology as well
 - Charge the polysilicon and track how quickly the charge leaks off to determine which cells are programmed (leaky) and which are not
- No disturb mechanism
 - Repeat the measurements as many times as needed to get the right settings

Dark spot - gate is intact

Bright spot – gate is leaking

Source

Conclusions

- Embedded NVM in standard CMOS processing is becoming mainstream for a variety of applications including security and encryption
 - Provides cost and process availability advantages over traditional mask-adder technologies
- Both floating gate and antifuse CMOS based NVM technologies are resistant to physical inspection based reverse engineering techniques
 - Antifuse based NVM can be made more visible through selective etch techniques
- Electrical inspection techniques are more effective on antifuse technologies than floating gates
 - Deprocessing and attempting to measure the contents of a floating gate NVM disturbs the memory contents
 - Antifuse technology is not disturbed by either deprocessing or electrical measurement techniques

