

An In-Depth Examination of the Workings of an Enterprise-Class SSD

David Flynn, CTO Fusion-io

Memory Enterprise-Class SSD Design

- Basic dimensions
 - Reliability & Data Integrity
 - Capacity
 - Performance
 - Longevity
- For each discuss...
 - Metrics
 - Raw Media capabilities (today & tomorrow)
 - Integration approaches (pros & cons)
- Scalability

Memory Reliability cannot be compromised

Reliability & Data Integrity

Other requirements vary by workload

The GOOD

- No moving parts
- Post infant mortality catastrophic device failures are rare
- Predictable wear out

The BAD

- Relatively high bit error rate, which increases with wear
- Higher density and MLC increases bit error rate
- Program and Read Disturbs

The UGLY

- Partial Page Programming
- Data retention is poor at high temperature and wear
- Infant mortality is high (large number of parts...)

Memory Controller Reliability Management

In-Flight

- Corruption upstream disk controllers
- Corruption in SSD controller itself
- Flush at power loss

At-Rest

- ECC
- Scanning & scrubbing
- Redundancy

Meta-data

- Error correcting memory
- Data integrity field

Poor Media + Great Controller = Great SSS Solution

Memory Capacity Performance Relationship

Performance is about ROI

Lower CapEx

- Fewer CPUs
- Less RAM
- Less Network Gear
- Fewer SW Licenses
- Less Space

Lower OpEx

- Less HW Maintenance
- Less SW Maintenance
- Greater Uptime
- Less Power/Cooling
- Fewer Diverse Skills

HIGHER Productivity

Flash Memory PCIe Attached SSD's

Confidential Information: Fusion-io

Performance Dimensions

Memory Traditional SSD's are no better

12

Memory Workload Segregation

A cache needs...

- Bandwidth
- Mixed reads and writes
- Writes while full (saturated)

That's exactly what SSD's suck at!

(well traditional ones anyway)

Confidential Information: Fusion-io

Memory PCIe SSD's are more like DRAM

15

The GOOD

- Performance is excellent (wrt HDDs)
- High performance per power (IOPS/Watt)
- Low pin count: shared command / data bus → good balance

The BAD

- Not really a random access device
 - Block oriented
 - Slow effective write (erase/transfer/program) latency
 - R/W access speed imbalance
- Performance changes with wear

The UGLY

- Some controllers do read/erase/modify/write
- Others use inefficient garbage collection

Memory Controller Performance Drivers

- Interconnect
- Number of NAND Flash Chips (Die)
- Number of Buses (Real / Pipelined)
- Data Protection (internal/external RAID; DIF; ECC...)
- SLC / MLC
- Effective Block (LBA; Sector) Size
- Write Amplification
- Garbage Collection (GC) Efficiency
- Buffer Capacity & Mgmt
- Meta-data processing

Performance vs Block Size (75/25)

Scalability

- Following Slides Show
 - Scalability of {1, 2, 4, 8} units
 - Only 1 SATA controller is used limiting scalability
 - Only 1 thread running
- Measurements taken at Read/Write Ratios of
 - {100/0, 75/25, 50/50, 25/70, 0/100}
 - RMS value is the "root mean square" of these values
- IOPS measurement taken at 512 Byte Transfers
- Bandwidth taken at 128K Byte Transfers
 - Unless shown differently
 - Linux has a 128K limit

Scalability vs RW Ratio vs Block Size

Scalability vs RW Ratio vs Block Size

August 2009

Scalability vs RW Ratio vs Block Size

Confidential Information: Fusion-io

Confidential Information: Fusion-io

Thank you!