

Solid State Disk Technology – Where Does it Fit for Customer Applications?

Rob Peglar Vice President, Technology Xiotech Corporation

Santa Clara, CA USA August 2009

A Blast from the Past – Happy 28th! August 1981

IBM Model 5150 Specifications

SUMMIT	
Processor	Intel 8088
Speed	4.77 MHz
RAM	16KB
Storage	Cassette Tape, optionally 5.25" 160KB floppy drives
Expansion	5 expansion slots
Bus	Industry Standard Architecture (ISA)
Video	Initially CGA (320x200x16 color, 640x200x2 color) or monochrome (80x25 text only))
I/O	Parallel, Serial
OS	Microsoft Basic 1 (ROM)
Killera ppusa August 2009	VisiCalc 3

Fast Forward – to 2009

Today, we have CPUs which are ~1,000x
Today, we have RAM which is 1,000,000x

- Today, we have storage which is 3,000,000x
- So what's the problem?

The Problem WAS – AND IS – I/O

- In a perfect world, I/O would not be necessary
 - 1st level store would hold everything, forever
- Access Density IOPS/GB
 - Getting WORSE over time for rotating magnetic
 - Will it get worse over time for non-rotating SSD?
- Example:
 - IBM Model 5150 625 KB/s, 8.33 ms, 3,600 RPM
 IOPS/GB = 20 / .001 = 20,000
 - Today 170,000 KB/s, 2.9 ms, 15,000 RPM
 IOPS/GB = 200 / 300 = 0.667

The Advent of Solid State Disk

- Technology Choices Boiled Down to Two
- NAND Flash
 - Slow (writes), cheap, dense, non-volatile
 - JFFS2
 - ONFI Open NAND Flash Interface now 2.0
 - Next up Phase Change Memory (PCM)
 Bit alterability
- DRAM
 - Very fast, dense, not cheap, volatile
 - No internal file system
 - Is it cache, or is it disk?

Business Criteria

Flash Disk as Magnetic Disk Replacement
Write cycles, cost/GB, media lifetime, TCO
DRAM Disk as (controller) Cache Replacement
Cost/GB, TCO, expandability/flexibility
Application Workloads

- Transactional (random) versus Batch (sequential)
- Database versus Files
- Structured versus Unstructured

Application Requirements

- Applications don't want disks
 - They want space (more is better)
- Applications don't want IOPS
 - They want time (less is better)
- Applications do I/O because they have to
 - But they don't really want to
- The problem is not applications, it's application programmers and the OSes
 - Guess which OS is 'out in front'?

Real-World Application Workloads

Unstructured data

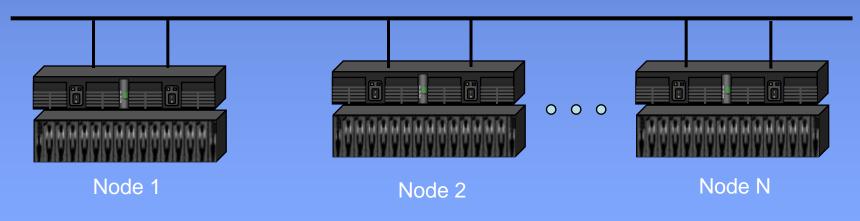
- Unstructured data access is a poor fit for SSD
- Exception small, non-growing, tagged files
- OS images boot-from-flash, page-to-DRAM

Structured data

- Structured data access is an excellent fit for SSD
- Exception large, growing table spaces
- Databases have key elements
 - Commit files logs, redo, undo, tempDB

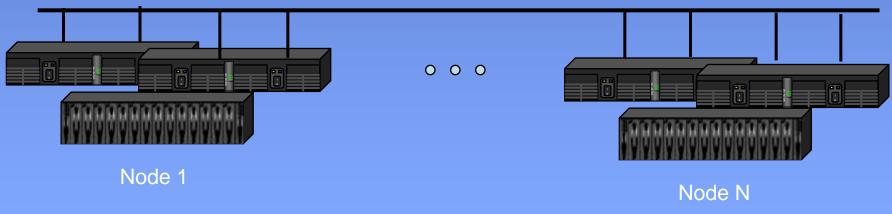
Memory How should I Design my SAN for SSD?

- SSD introduces a new complexity into SAN
 - Or does it?
- SSD should be treated <u>exactly</u> like magnetic
- External SSD == bad
 - Captive to server, doesn't scale
- SAN-based SSD == good
 - Not captive to server, scales
 - Add more SSD drives as demand grows, online
 - Virtualized & Clustered & Switched (no FC-AL)

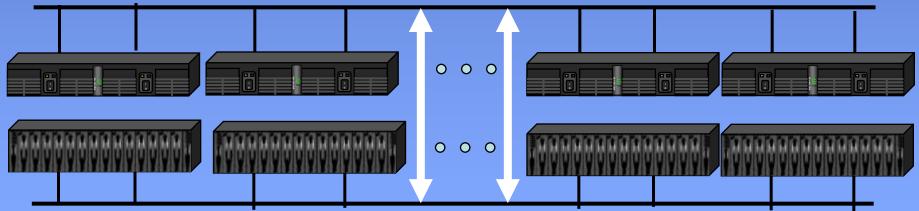

 IF YOUR ARRAY IS MANY ARE NOT

None of this matters unless apps can control the the ir own storage destiny – like malloc() ust 2009

Three Types of Clustered Storage


- Type 1 Single-access captive storage
 - Controller node integrated with captive disks
- Clustering is via multiple instances of nodes
 - Flaw Inter-node latency to reach disks
 - Flaw Sparing across nodes SPOF controller
 - Flaw aggregated arrays use FC-AL

Three Types of Clustered Storage


- Type 2 Dual-access captive storage
 - Pairs of controller nodes integrated with captive disks
- Clustering is via multiple instances of dual nodes
 - Flaw Inter-node latency to reach disks
 - Flaw Sparing across nodes
 - Flaw aggregated arrays use FC-AL

Three Types of Clustered Storage

- Type 3 Multi-access non-captive storage
 - N controller nodes networked with N storage nodes
- Clustering is optimal controllers & storage
 - Any-to-any communication to intelligent storage elements
 - Intelligence & Sparing at the storage node level
 - Grid allocation, head-level I/O & mapping, active recalibration

THANK YOU

Q&A

Santa Clara, CA USA August 2009