

Integrating Solid State Storage and DRAM onto Standard Memory Module Form Factor (SSDDR)

Phan Hoang
Virtium Technology, Inc.
V.P. of Research & Development

Agenda

- The Need to Integrate SSD & DRAM onto a Module
- Today's Technologies make SSDDR Possible
- A Bright Future for SSDDR
- The Road Ahead for SSDDR Applications

August 2009

The Need to Integrate SSD & DRAM onto a Module

The Need to Integrate SSD & DRAM onto a Module

- Future potential: single chip, single package – a complete processor integrating memory controller and I/O controller
- A need to scale volatile & non-volatile subcomponents (SSD & DRAM) onto a single, small form factor

Increase overall system performance

Lower power

1-CHIP INTEGRATION

2-CHIP INTEGRATION

3-CHIP TRADITIONAL DESIGN

The Need to Integrate SSD & DRAM onto a Module

Integrate volatile & non-volatile to:

- Save cost
- Increase overall system performance, lower the power consumption
- Scale to smaller form factor and lighter weight

Today's technologies make SSDDR Possible - Components

DRAM technology trends:

NAND flash technology trends

- Smaller DRAM & Flash components make the integration possible in a small form factor i.e. SODIMM
- Low power consumption components help to reduce design complexity i.e. reduce number of power supply input pins and consolidate two different voltage technologies into a single voltage supply

Today's technologies make SSDDR Possible – PCB Technology

Memory Module stack-up & Impedance requirement

SSD stack-up & Impedance requirement

8 layers stack-up (SODIMM)

- Single end 0.1mm width
 - Outer layer 60 ohms +/- 40%
 - Inner layer 55 ohms +/- 10%
- Differential 0.1mm width
 - 88 ohms +/- 1/0%

Mixed signal PCB technology enables the integration of these two technologies

Combine onto a 40 mil thick – 10 layers PCB

Maintain signal integrity and crosstalk between mix and match signals

4 layers stack-up

- Single end 0.1mm width
- 50 ohms +/- 10%
- Differential 0.1mm width
 - \100 ohms +/- 5%

	Violate	Cutor	Layer Harris	Type	Usage	mile, co	10	mile	atter:
2	1000	$\overline{}$		DANIESTO	Solder Made	1.3	-2.6		
2	122		9 (28)	PARKE	Rand		Allegen	28	52.6
1	100			Dielectric	ELECTRICAL SECTION 1	2.6	3.6		
4	12		1.2 GHD PLANET	RASE OF	Hand	9.5	454din	1	83
E	1000		-	Develope	To do til mine		38		
18.	F		17-DA7A_600	Make at	(Signol-	10.6		9.	117
1	0(20		1000000	Decision	School et al.	(4)	3.8		
B. T	F.		LA THE PLANE	Metal	Rese	6.6	nilation		57.E
2	10000			Districts	Substitute	- 1	2.9		
10	13		15,A00,510,VE	Mater	Sgrot	0.5	"PARCY	4.	12.5
15.	1000			DREADIN	Subspirate.		2.9		
12	17		\$9_ACG_500_HD	PARK.	Dane	46,6	Water	3	172.9
13				Detection	Substrate	2	34		
14	F.		87_FV3_3V8_FL	(Market)	Flace	9.5	HARRY	. B.	157 m
11	2000			Derychis	Substrate.	- 4	38		
14.	15		13 ft 49(90	.060140.	Signol	9.5	nAighte-	2	312
17.	100			Clierectric	3000 66	4	18		
14:	12		LEGILLE GIOLES	HOUSE	- Parts	0.5	w.Pagnor	- 51	-37
19	COL			Deverons	Distriction	2.6	3.8		
25	P		MOTTON	BRIEFE	Signol	4	KINDEN.	36	424
21	10000			Deliverate	Table Wash	0.2	. 54		

				1 Dierance	MILITARIA	MIGKERITORIE
Substrate 1 Height	H1	5,0000	+/-	0.0000	5.0000	5.0000
Substrate 1 Dielectric	Er1	4.2000	+/-	0.0000	4.2000	4.2000
Lower Trace Width	W1	8.0000	+/-	0.0000	8.0000	8.0000
Upper Trace Width	W2	7.5000	+/-	0.0000	7.5000	7.5000
Trace Separation	S1	14.0000	+/-	0.0000	14.0000	14.0000
Trace Thickness	T1	1.3000	+/-	0.0000	1.3000	1.3000
Coating Above Substrate	C1	0.4000	+/-	0.0000	0.4000	0.4000
Coating Above Trace	C2	0.4000	+/-	0.0000	0.4000	0.4000
Coating Between Traces	C3	0.4000	+/-	0.0000	0.4000	0.4000
Coating Dielectric	CEr	4.2000	+/-	0.0000	4.2000	4.2000

Today's technologies make SSDDR Possible

SSDDR Video

A Bright Future for SSDDR

The Road Ahead for SSDDR Applications

SSDDR in use

Product Image Courtesy of PTi

Benefits of integrating Solid State Storage and DRAM onto Standard Memory Module Form Factor:

- Smaller
- Lighter
- Higher performance
- Lower cost

Q&A