

High-Speed NAND Flash

Design Considerations to Maximize Performance

Presented by: Robert Pierce Sr. Director, NAND Flash Denali Software, Inc.

FlashMemory History of NAND Bandwidth Trend

Memory High-Speed Flash Interfaces **Flas**

- \triangleright The NAND Flash interface has been a bottleneck in achieving high performance for system applications
	- \triangleright As page size increases to 4KB, the SLC tR time of ~20 µs is completely unbalanced with the data transfer time of $~100$ µs in legacy/native NAND
- \triangleright High performance applications (i.e. Cache, SSD's , etc.) have been unable to show the true capability for random operations required by today's systems and OS's
- \triangleright Changes to the flash device architecture will have even more effect for these new devices
	- \triangleright Page size increases
	- ¾ Multi Plane
	- \triangleright Additional Spare area for Metadata
	- \triangleright Enhanced commands

4

Actor Key Aspects to Higher Interface Performance Improvements

- \triangleright Increase the number of commands to the flash device
	- \triangleright Maximizes the number of transactions for a device
	- ¾ Multi-plane architectures are very useful
- ¾ Interlacing, by CE or LUN
	- \triangleright CE interlacing uses more pins
	- \triangleright Polling mode not as useful
	- ¾ LUN (Logical Unit Addressing) very useful, with pin reduction
- \triangleright Transaction size
	- **≻ 8K page size can increase Read BW**

FlashMemory Parallelism using Chip Enables

- \triangleright 4CS Interleave
- \triangleright 4KB Page size (transfer time is ~30us - 4096*7.5ns)
- ¾ Program time ~800us typical
- \triangleright Dual plane support (T1 is transfer for plane 1 and T2 is transfer for plane 2)
- \geq 860 us Program Cycle = One program time + two transfer times (800+30+30)
- \geq 32 Kbytes data written in one program cycle
- **→ 37 MBps Theoretical max** throughput per program cycle
- \geq 20% controller and flash software overhead
- \geq 30 MBps estimated throughput

- \triangleright 4CS with LUN Interleave
- \triangleright Two LUNs (0 & 1) per CS
- \triangleright 4KB Page size (transfer time is ~30us - 4096*7.5ns)
- ¾ Program time ~800us typical
- \triangleright Dual plane support (T1 is transfer for plane 1 and T2 is transfer for plane 2)
- ¾ 860 us Program Cycle = One program time + two transfer times (800+30+30)
- \triangleright 64 Kbytes data written in one program cycle
- ¾ 74 MBps Theoretical max throughput per program cycle
- \geq 20% controller and flash software overhead
- \triangleright 60 MBps estimated throughput
- \triangleright Achieved twice the throughput with LUN interleaving

 \triangleright The earlier examples were without any interface overhead

In Reality

 \triangleright There is idle time required when:

- ¾ we switch between devices, dies during an dieinterleaving operation
- ¾ we switch between chip enables during interleaving

¾ System integrator needs to look at a combination of array performance timing as well as the intercommand idle time to arrive at target achievable performance

Memory High-Speed Controller Key Features

Key Toggle Features

- ¾ 63 and 83 MHz operation
- ¾ Multi Plane support
- ¾ Multiple I/O voltage
- ¾ I/O strength support
- ¾ Cache Read/write commands
- ¾ Programmable/Erase lockout during power transitions

Key ONFi 2.1 Features

- \triangleright Discovery and Initialization
- \triangleright LUN addressing
- \triangleright Interlaced and noninterlaced addressing
- ¾ Source synchronous operation
- ¾ Staggered power up
- ¾ I/O strength support
- ¾ ONFi 1 modes 0,1,2,3,4,5
- ¾ ONFi 2 mode support 1,2,3,4,5

Flash Memory Flash Controller HW Architectures SUMMIT

HW Accelerated Controller

Software Driven Flash Timing

¾ Key Differences

- \triangleright Flash command execution
- **≻Interrupts**
- ¾ Processor overhead

Memory High-Speed NAND Challenges

- ¾ New NAND devices (e.g.Toggle NAND, ONFi 2.X) offer tremendous performance improvements over past solutions
- ¾ Using old controller and firmware solutions will be unable to utilize this performance capability
- ¾ Physical interface requires a more defined solution, not only for timing but for legacy support
	- ¾ Multi voltage I/O's
	- \triangleright Programmable drive strength
- \triangleright Latency in the controller will increase buffer overhead
- ¾ Multi page size and ECC options need to be present in all HS applications

PHY Overview

PHY Architectural Overview

- ¾ Separate PLL
	- \triangleright Use for multiple slices
- ¾ Soft PHY slice
	- \triangleright Highly reusable
	- \triangleright Flexible layout
- \triangleright Test Logic for at-speed test
- ¾ No DLL reduces power and gate count. 4X clock at IO frequency
- ¾ Clock reference
	- \triangleright Minimally buffered PLL input to slice for source synchronous domain
	- \triangleright Normal clock tree for DFI, flop-to-flop timing

Available for SOC now, FPGA Support soon.

- ¾ Works with ONFi2 and Toggle as well as legacy flash
- ¾ Base design has been verified by DDR DRAM controller
- ¾ Process technology agnostic
- \triangleright Scalable to many multiple channels
- \triangleright Multiple drive strength support for new H.S device
- ¾ No DLL, simplified clocking methodology \triangleright No 3rd party core IP
	- ¾ I/O's need to be supplied

- \triangleright DQS to DQ valid = tDQSS<.10clk
- \triangleright DQS to DQ invalid = tDH>.38clk
- ¾ DQS capture at .125clk, .25clk and .375clk
- \triangleright Three valid capture points are available when we need only two for reliable capture because of pattern matching

- \triangleright DQS to DQ valid = tDQSS<.092clk
- ¾DQS to DQ invalid = tQH>.322clk
- ¾DQS capture at .125clk, .25clk and .375clk
- ¾ No read capture points; Reason is tDQSS is larger than .125clk with I/O uncertainty normally used for flash (500ps), the second read capture point is valid, the third capture point is never valid
- ¾ This could be used if I/O uncertainty was less than .033clk at 100MHz or 330ps

- \triangleright DQS to DQ valid = tDQSS<.092clk
- ¾DQS to DQ invalid = tQH>.322clk
- ¾DQS capture at .125clk, .1875clk, .25clk and .3125clk
- \triangleright Four read capture points: the first and last may not be reliable due to I/O uncertainty, but the two middle capture points will always work with pattern matching

- \triangleright To maximize performance, new architectures and solutions are necessary to achieve the performance that the new High-Speed Flash devices offer
- ¾ High overhead software solutions will have difficulty achieving desired performance levels
- ¾ Trends in the Page size as well as ECC sector size will have an interesting effect for SSD and high capacity flash array applications
- ¾ It is possible to support both Legacy and High-Speed solution with one device
- \triangleright The increase in commands and addresses will put more burden on the processor and the Host interface

