

Using the Appropriate Wear Leveling to Extend Product Lifespan

Presented by: Bill Roman Datalight Software Architect

Santa Clara, CA USA August 2009

- Basics of wear leveling
- Dynamic vs. Static Wear Leveling
- Other Considerations
- Conclusions

Santa Clara, CA USA August 2009

Wear leveling: a set of algorithms that attempt to maximize the lifetime of flash memory by evening out the use of individual cells.

Santa Clara, CA USA August 2009

Growing Impact on Product Life

- Controller using read-modify-write operations
- If there is no wear leveling, an area of the flash can become unusable in just a few months
- Wear Leveling cannot be ignored, but does not need to be a 'big deal'

Conventional File System on Flash

- Inefficient
- Hot spots
- Not interruption-safe
- Usable for read-only

- Largely inherent in any flash management system
 - Overwrites in flash are generally not allowed
 - Writes to NAND must be sequential
 - Requires data to be moved to efficiently use NAND

- Original JFFS used this strategy
- Strictly linear
- "Perfect" wear-leveling

Immediately after erasing

Free

A file is written

|--|

Data in the file is modified

Invalid	Valid	Free

More files are created, modified, deleted

So it's necessary to compact valid data into a free erase block

Becomes

- Effectiveness is based on application use case
 - How much data is unchanged?
 - Only works on areas of flash which are frequently updated
 - Static data therefore reduces life of the flash

- Actual Life = Specified Life * (1- static data size/total flash size)
- Balance "perfect" wear leveling against efficiency by occasionally moving static data

Ignorance is bliss

- The system can ignore what it does not know
- If data is never written, it is not considered (remains unmoved)
- Decisions to move data can be based purely on performance needs

Static WL is most effective

- Largely independent of the systems' use case
- Large (or all) portions of the media are considered
- Static data does not significantly degrade life of the flash

Implementations are more complex

- The system must track media usage and evaluate otherwise unused media
- Requires additional erase and copy operations with zero return to performance
- Impacts to performance can be substantial

- Both approaches should be evaluated for an effective wear leveling solution.
- Dynamic is low effort and high performance
- Static ensures that media life is maximized, but at a cost to performance
- Statistical implementations may not handle certain use cases or break down entirely

Dynamic vs. Static

66	5504	17	1	103	1	57	1	75	1	60	5440	r	1	74	1	2252	2163	1573	1508	1944	2167
5488	1	5472	1	5235	5339	1	1	5389	1	23	5455	i.	5353	1	39	2171	1610	1912	2058	1598	1643
27	1	52	1	151	47	1	95	1	27	81	65	1	62	1	5496	2302	1648	1542	1586	1683	2294
5463	1	5413	1	156	5362	1	5583	1	5387	69	1	5403	1	253	1	1702	1763	1524	1944	2197	1656
5534	1	5410	1	1	154	64	1	5404	1	72	3	63	5429	1	77	1812	2230	2184	2206	1707	2124
13	1	1	46	5469	1	1	43	1	66	1	5375	1	16	5481	1	2167	1549	1548	1669	1593	2000
1	136	1	23	1	169	1	5436	1	5420	5291	1	7	1	5205	5338	1530	1542	2217	1673	1572	1717
1	2	92	172	5431	121	5480	139	305	1	41	242	ì	32	172	39	2161	1673	2259	1563	1703	2038
5412	5186	i.	38	91	5407	88	32	126	112	5313	32	47	2	23	1	2194	1601	2240	1822	2163	1526
1	1	1	837	1	1	1	1	87	5355	5359	1	1	4	1	1	1884	1536	2185	2289	2117	2240
1	155	5352	1	1	1	1	40	1	1	1	1	99	1	1	1	1638	2176	1703	1625	1608	1520
2	39	1	26	5265	1	111	1	26	5401	1	1	35	1	38	1	2164	2130	1521	2162	1651	2246
22	51	1	5291	4	32	5490	1	55	1	40	1	100	1	52	1	1540	1736	1696	1513	2249	2366
70	5404	1	554	1	5264	5374	1	121	1	5321	5348	1	94	1	115	1652	2198	1591	1543	1843	2205
5457	Ĩ	E.	147	ž.	5347	ì	312	1	5369	230	1	1	42	Ĩ.	104	1776	1872	2026	2253	1532	2216
1	5332	1	5399	140	1	5418	1	5619	1	1	177	4	1	5424	1	2250	1506	1579	1578	2037	2143
246	1	288	1	2	5466	82	1	2	1	5339	29	1	5451	1	144	1654	1676	2248	2261	1666	1596
5377	1	5518	1	154	5097	1	10	1	5314	5371	1	1	5462	1	243	1607	1880	1537	1904	2236	1522
169	4	116	1	5364	20	1	3	1	14	364	238	î.	5330	64	1	2258	2194	2134	1523	1720	2254
5328	1	5384	5410	4	1	5350	1	5371	1	191	1	5318	5535	1	1	2061	2131	1855	2202	2303	2242
51	1	61	1	5548	5321	1	143	1	128	1	5339	1	1	5391	325	2406	2072	1558	1519	2181	1505
1	5396	1	61	1	5371	5342	5486	5428	1	5495	1	114	5305	1	5310	2208	2267	2229	2259	2248	2191
1	5491	42	1	60	1	89	44	1	5438	1	1	5357	2	1	67	2173	2219	2192	1693	2109	1596
1	5328	5383	1	5431	1	48	37	1	5460	1	5336	1378	1	8	1	1555	2206	2206	2213	2350	2064
65	1	5427	1	2	1	1	5366	105	1	15	1	9	17	79	192	2190	2222	2245	1513	1548	1833
1	78	77	1	5339	1	179	1	5387	1	з	5347	1	1	133	1	1871	2189	2185	1636	1821	2138
26	1	5455	65	33	5401	1	5446	1	69	1	331	57	4	40	1	2146	1531	1559	1546	1683	1607
10	35	1	5324	1	60	5319	1	70	1	32	72	214	1	5511	1	2060	1581	1657	2170	1622	2162
55	5379	117	73	53	2	5436	ĩ	737	1	5488	135	1	5405	1	.1	1721	1936	2312	1867	2147	2254
183	85	1	167	1	103	1	57	1	ı	61	123	1	5	5396	5399	1756	2083	1863	1587	1520	1530
62	5564	73	114	1	18	5257	74	93	80	1	90	99	5385	5404	5402	1548	2168	1594	2218	1534	1589

Static + Dynamic

Santa Clara, CA USA August 2009

Dynamic Only

Do I really need to care about Wear Leveling?

Use case description

- System is a 40GB SSD in a notebook running Windows XP
- OS and applications account for 18GB and 12GB respectively
- Use is primarily communication, presentations, etc.
- The flash used consists of MLC parts with 2.5K cycle rating

- Average daily writes by the OS... about 1.8GB... Surprised?
- User application writes are dwarfed by comparison
- A single cycle of the entire media requires nearly a month (22 days)

- And assuming reasonably effective static wear leveling (60%), entire media is available for wear leveling
- 2,500 cycles x 22 days = 1,855 months x .60
 = 211 years

- Assuming we have a lackluster dynamic algorithm (90%) reduce available size by 30GB (application and OS)
- 2,500 cycles x 6 days = 750 months x 0.6 = 37 years

What Wear Leveling Does for Reads

- Dynamic wear leveling will not move areas that are only read
- High differences in erase counts result in higher BER
- Uncorrectable error rates are increased by 2-3 orders of magnitude

- Reads ~ Writes, but startup and hibernate cost additional 7GB of reads
- NAND manufacturers recommend cycling after 100,000 reads
- In use case, upwards of 2000 reads from the same areas daily
- With no caching and no wear leveling, cycle limits reached in 2.5 months

Balancing Wear Leveling with Performance

Wear level operations should be bounded

- Impacts to performance must be low
- Take advantage of idle time if possible

 Features such as trim, pre-erase, discards will mitigate negative performance impacts of wear leveling

Balancing Wear Leveling with Performance

- Interleaving = speed
 - We interleave multiple plans on single devices for concurrency
 - Then two or more devices for a wider data path (more concurrency)
 - And then we do it again with multiple NAND channels or banks
 - And then once again in the field (RAID)

 To arrange data in a non-contiguous way to improve performance – Webopedia.com

Chip 0

Interleaving can cause unacceptable error counts

- Interleaving two NAND devices can double the number of bad blocks
- Requiring more complex systems, more overhead, and/or stronger EDC

- Wear leveling requirements are substantially dependent upon use case
- Impacts to performance will increase with more static data in the disk
- Embedded systems will have more stringent requirements
- Understand your target customers' use case

- http://ieeexplore.ieee.org/Xplore/login.jsp?url=http://ieeexplore.ieee.org/iel5/455 0747/4558854/04558857.pdf&authDecision=-203
- http://www.stanford.edu/class/ee380/Abstracts/081112-Fazio-slides.pdf
- http://download.micron.com/pdf/presentations/events/WinHEC_Cooke.pdf

