

Ali Pourkeramati

Chief Technology Officer Spansion Inc.

Breaking Down the Barriers:

Bringing Disruptive Memory Technology to Market

FLASH FORWARD

How Radical Should Changes Be?

Disruptive Interrupt the normal course of Technology

Evolutionary.

Continue to change from a lower to a higher, more complex, or better state of Technology

000

000

2 © 2009 Spansion Inc.

New Applications, New Infrastructure and New Market

OR

Improve the existing applications

More applications without creating
 a new infrastructure

000

How Disruptive Technology can be effective?

"In spite of the rare instances when disruptive technology has been successfully deployed in the memory industry, we operate under the assumption that it can and should be, without fully examining how to do it or even if we should."

> Spansion as one of the few companies that has successfully deployed a disruptive technology in the memory market.

Polarized Mainstream Memory Use

Defines infrastructure and ecosystem

Source: Gartner (February 2009)

* Excludes memory embedded in ASIC or ASSP components.

000

Memory Attributes

Keep discrete or combine in one technology?

DRAM Volatile + Refresh Most expensive Very fast read & write

> Best for Real time code execution cache

NOR Non-volatile Low cost Fast read High reliability

Best for code storage and execution

NAND Non-volatile Lowest cost Fast write & erase

> Best for media storage

0 0 0

Does Disruptive Technology = Disruptive Use?

Sometimes ... but then it takes much longer to ramp

Source: Spansion

Next-Generation Memory Specification

Table stakes to deliver "acceptable" system benefits

- Competitive cost
- Compatible with high-volume manufacturing techniques
- Architecture balance
 - Performance
 - High speed read
 - High speed program, erase/overwrite
 - Low power
- Reliability
 - Data retention
 - Endurance

"Acceptable" defined by the infrastructure

- What is required from the memory device
- What can be exploited by the system software and hardware

000

Technology & Infrastructure Maturity

	Mature	Evolving	Disruptive (Near Term)	Disruptive (Long Term)
Technology	Floating Gate	Charge Trapping (e.g. MirrorBit®)	РСМ	Other RCM RRAM MRAM
Mass Market Maturity	20 years	7 years	Years Away	Many Years Away

Source: Spansion

Resistive Change Memory

Near term or long term technology solution?

- 1. 4-5F² MLC cell
- 2. Compact select device with sufficient drive current, e.g. vertical diode
- 3. Minimum pitch, fine-line, high conductivity interconnect in both directions

0 0 0

Near Term: Phase Change Memory

0000

Challenges the industry has to overcome

	Issue	Risk	Comments
1	Performance: Programming speed	High	High current limits parallelism in programming
2	Manufacturability: Process complexity	High	Challenging integration with significant number of critical masking steps
3	Cost and Manu: Multi-level capability	High	Resistance drift challenges state placement
4	Cost Complexity vs. existing technology	High	SLC significantly more complex process
5	Cost Cell size	High	Compromises for shrink from 12F ²
6	Cost and Manu. Scalability	High	Select devices may not scale. GST area is already sub-lithographic
7	Bit alterability	Low	Truly disruptive for NVM

Charge Trapping: Innovation at the Cell – Evolution in the System

Disruptive Scalability

Source: Spansion estimates

000

000

13 © 2009 Spansion Inc.

Evolutionary Ramp

New technology must be "acceptable" for the customer

MirrorBit[®] technology share of NOR segment

Source: Spansion

NOR Cell Size Scaling Example

000

What It Takes to Make "It" Work!

- 0 0 0 0 0 0 0 0 0
- Intimate Technology, Design, Product Eng, Test Collaboration
 - New & old technology aren't the same Different mindset required
 - What works in the lab doesn't necessarily work in production
- Specific MirrorBit[®] technology design innovations

Advanced Program and Erase Algorithms	 Temperature and cell location compensation Compact, uniform cell distributions 	 Stabilizes cell behavior Optimizes data retention 	
Advanced Read	 Increases margin by reducing parasitic currents Opens up sensing window 		
Advanced Process	 Creating the highest tech 	nnique in process	

Charge Trapping Next Steps with MirrorBit[®] NAND Technology "Evolution of Technology"

The Technology

MirrorBit[®] NAND Technology

- SONOS-like cell structure
- Cells connected in NAND array
- Highly scalable
- SLC and MLC capable
- Leverages proprietary MirrorBit[®] charge trapping technology and manufacturing know-how
- Different technology but excellent process compatibility with MirrorBit NOR for production in same fabs

000

Efficient Die Size

* Source: Spansion estimates of MirrorBit® NAND versus 4xnm Floating gate SLC NAND solutions

What Will the Future Look Like?

Moving closer to the ideal memory

What Will the Future Look Like?

000 000 000

Moving closer to the ideal memory

21 © 2009 Spansion Inc.

Conclusion

Existing industry is structured for evolution

- Even in Silicon Valley!
- Disruption can be risky for both customers and suppliers
- It takes a long time to create new Infrastructure in a new Eco-System

New technology is never adopted quickly

- Memory doesn't exist in a vacuum
- Even evolution takes a while
- Disruption needs H/W and S/W infrastructure to change

Tomorrow's technologies...

- Must be relevant and must be viable
- Must offer more than today's technology ... otherwise why change?

FLASH FORWARD

Spansion[®], the Spansion logo, MirrorBit[®], MirrorBit[®] Eclipse[™], ORNAND[™], EcoRAM[™] and combinations thereof, are trademarks of Spansion LLC in the U.S. and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.

This document is for informational purposes only and subject to change without notice. Spansion does not represent that it is complete, accurate or up-to-date; it is provided "AS IS." To the maximum extent permitted by law, Spansion disclaims any liability for loss or damages arising from use of or reliance on this document.

