

Storage Best Practices for Microsoft Server Applications

Dennis Martin President, <u>Demartek</u> Principal Research Contributor Performance Lab Portal wikibon.org

- Brief Company Overview
- Storage Technology Overview
 - Devices, Interfaces, RAID
- Recommendations and Best Practices for Microsoft Server-based Applications
- Performance Comparisons (solid state and spinning disks)
- References

Demartek Company Overview

- Industry analysis with on-site test lab
- Lab includes servers, networking and storage infrastructure
 - Fibre Channel: 4 & 8 Gbps
 - Ethernet: 1 & 10 Gbps (with FCoE and iSCSI)
 - Servers: 8 cores, up to 96 GB RAM
 - Virtualization: ESX, Hyper-V, Xen
- Web: <u>www.demartek.com</u>

Storage Technology Overview

- Devices
 - Solid State and Spinning Disk Drives
- RAID
- Interfaces
- Comment: "overlap"

Storage Devices

Solid State Disks (SSD)

- DRAM
- NAND-Flash
- Spinning Disk Drives
 - Enterprise
 - Desktop
 - Others

Solid State Disks

- Memory technology designed to appear as an online storage (disk) device
- Very fast, no moving parts
- Variety of form factors
- Prices dropping
- Some SSDs use DRAM and NAND-Flash together

SSD: DRAM

- IOPS (I/O per second) range from 70K to 5M
- Latencies measured in microseconds
- Almost always includes battery-backup and/or disk-drive for safety
- Can be used as a cache in front of other storage

SSD: NAND-Flash

- Non-volatile
- IOPS range 10K 35K reads, writes are slower
- Single device up to 1 TB+
- Variety of interfaces
- Quiet, low-power, low-weight, low-heat
- Two basic types (SLC & MLC)

NAND-Flash: SLC

Single-Level Cell (SLC)

- One bit per cell, faster, lower capacity
- Lower error probability and longer life (100,000+ write cycles)
- More expensive than MLC
- More suited to enterprise-class applications

NAND-Flash: MLC

Multi-Level Cell (MLC)

- Multiple bits per cell, slower, higher capacity
- Higher error probability and shorter life (10,000+ write cycles)
- Less expensive than SLC
- Generally used for consumer applications

NAND-Flash Storage Today

Form factors:

- Disk drive: 3.5-inch, 2.5 inch, 1.8 inch
 Interfaces: same choices as spinning disk
- Card installed in PCI-Express bus
- Blade-server mezzanine cards
- Consumer device cards, sticks, etc.
- Current issues:
 - How to measure the usable life of NAND-flash
 - Determining the right mix: SSD & spinning disk drives

NAND-Flash Storage Futures

- Expect some overlap between enterpriseclass and consumer-grade technologies
 - Enterprise feature/function with MLC
- Interfaces: SAS? USB?
- On motherboards
- Other internal and external connection types

Spinning (magnetic) Disks

- Disk drive technology is well-known
- Market requirements dictate differences in drive types, from enterprise to consumer devices
- Reasonably fast, but slow when compared to CPU and memory
 - IOPS (random I/O) range: 100-1000
- Good pricing with steady price declines and increasing capacities

Types of Spinning Disk Drives

- Categories
 - Enterprise
 - Desktop
 - Notebook
 - Consumer

Some overlap between drive categories Drive type does not necessarily dictate interface type

Disk Drives: Enterprise

- Rotation speeds: 10K and 15K RPM
- Can tolerate higher vibration in racks
- Designed for 7x24x365 operation
- Moving to 2.5 inch form factor
 - Reduced power, heat, space, weight
- MTBF: 1M+ hours
- Warranty: 5 7 years

Disk Drives: Desktop

- Rotation speeds: 5400 and 7200 RPM
- 3.5 inch form factor
- Very large capacities (up to 2 TB)
- Some are only designed for 8x5 operation
- Warranty: 3 5 years

Disk Drives: Notebook & Consumer

- Meets the needs of laptop and consumer device market
 - Low power consumption (slower RPM)
 - Light weight
 - Smaller form factors (2.5, 1.8, 1.0 inch)
 - Can tolerate some physical shock
- Not appropriate for server-based applications

Monday, August 17, 2009

Spinning Disk Drive Comparison

Device	Enterprise	Desktop	Notebook	Consumer			
Avg. seek time	3 – 5 ms	8 – 11 ms	10 – 15 ms	12 – 15 ms			
Transfer rate (MB/ s)*	70 – 170	60 – 120	30 – 80	6 – 40			
RPM (K)	10, 15	5.4, 5.9, 7.2, 10	4.2, 5.4, 7.2	3.6, 4.2			
Capacities	Medium (2.5") Large (3.5")	Very large	Medium	Small			
Command Queuing	TCQ or NCQ	NCQ	NCQ	-			
Power need	Medium (2.5") Large (3.5")	Medium	Low	Very low			
Warranty	5 – 7 years	3 – 5 years	1 – 5 years	1 – 3 years			
Santa Clara, CA USA * Maximum device transfer rate in megabytes per second from drive surface to buffer.							

Sustained rates are lower. This is not the same as the interface transfer rate.

Monday, August 17, 2009

Disk Drives: Recommendations

- For Microsoft Server Applications only consider enterprise and desktop drives
- Enterprise drives → Performance They will run out of capacity before they run out of performance
- <u>Desktop drives → Capacity</u>
 They will run out of performance before they run out of capacity

- Disks working together to increase reliability or performance or both
 - **RAID 0**: Interleaving or "striping" data across two or more disks
 - **RAID 1**: Disk mirroring same data written on two different disks *(rebuild possible)*
 - **RAID 5**: Data striping with single parity across multiple disks (*rebuild possible*)
 - **RAID 6**: Data striping with double parity across multiple disks (*rebuild possible*)
- RAID 1 can be combined with other RAID types

RAID Comparison

RAID Type	Transactional I/O Performance	Capacity Utilization	Disk Failure and Rebuild Performance
RAID 0	Good	Best	Poor
RAID 1	Best	Poor	Best
RAID 5	Good	Good	Moderate
RAID 6	Good	Moderate	Good
RAID 10	Best	Poor	Best

RAID Recommendations

- Choose RAID to spread data over multiple disks ("spindles") to get better performance and reliability than using individual disks
- Best overall performance: generally RAID 10
- Best capacity (with recoverability): generally RAID 5

Storage Interface Comparison

	SATA	SAS	Fibre Channel	FCoE	Infiniband	USB
Number of devices	1	16K	16M	16M	16M	127
Maximum distance (meters)	1	10	10K+	10, very long	20, very long	5
Cable type	Copper	Copper	Optical	Copper, Optical	Copper, Optical	Copper, Wireless
Interface device	On-board, HBA	On-board, HBA	HBA	CNA, 10Gb NIC	HCA	On- board
Transfer speeds (MB/sec)	150, 300	300, 600	100, 200, 400, 800	400, 1000	1000, 2000, 4000	0.15, 1.5, 50, 500*

MB/sec = Megabytes per second, which is generally calculated as megabits/ second (Mbps) divided by 10 for planning purposes * SuperSpeed USB devices expected in 2010

Santa Clara, CA USA August 2009

Monday, August 17, 2009

Interface Futures

- As interface speeds increase, expect increased usage of fiber-optic cables and connectors for most interfaces
 - At higher Gigabit speeds, copper cables and interconnects become too "noisy" except for short distances
- Expect to see SAN-like types of features for interfaces such as SAS, USB and perhaps others

Fibre Channel and iSCSI

- Each addresses a different market that has different needs with respect to performance, reliability, scalability and manageability
- Although there are different "plumbing" characteristics between FC and iSCSI, the applications storing data on them can't tell the difference

Best Practices

Santa Clara, CA USA August 2009

26

General Recommendations

- Configure storage for application servers with performance and availability as design criteria
 - Many server applications must satisfy high transaction rates
- Use more disks and faster disks for best performance
 - If you choose "desktop" disk drives, you're often emphasizing capacity above performance (this choice may also reflect your budget)

Windows Storage Formatting

- Disk Alignment
- Format Allocation (Cluster) Size
- Stripe Size
- Thin Provisioning Storage
- SSD-aware operating system versions

Disk Alignment

 Windows Server 2003 or older: Align the file system to the disk offset recommended by the storage hardware vendor. If unknown use an offset of 64K.

• Diskpart command: create partition primary align=64

 Windows Server 2008 uses default alignment of 1MB

Format Allocation Size

Exchange Server

- Databases: 64K
- Logs: can use default size (typically 4K)
- SQL Server: use 64K for volumes dedicated to SQL Server
 - The SQL Server page size is 8K
 - SQL Server allocates disk from the operating system in units known as "extents" of 8 pages

Stripe Size

- Since SQL Server accesses disk storage in 64K blocks, the optimum disk array stripe size Microsoft SQL Server volumes is 64K
- Similar recommendations for Exchange Server

Thin Provision Storage

- Thin provisioning storage systems use pointers, linked-lists and other similar techniques to minimize the consumption of capacity
- Always use the "quick format" option in Windows
- Defragmentation is not necessary from the operating system

SSD-aware Operating Systems

- Operating systems need to detect the presence of NAND-flash SSDs
 - Windows 7
 - Windows Server 2008 R2
- No defragmenting
- Trim notify the underlying device regarding data that is no longer needed

Exchange Server

- Consider performance before capacity
- Exchange Server is sensitive to disk read and write latencies
 - Exchange Server wants average read latencies < 20 msecs.
- Place Exchange logs on lowest latency disks
 Place databases and logs on separate RAID sets

SQL Server TempDB

 For best performance, the number of TempDB data files should equal the number of CPU cores in the server
 TempDB is an excellent candidate for SSD

SQL Server & SharePoint

Ideally, use separate RAID sets for:

- TempDB: RAID10 (write-heavy)
- Transaction logs: RAID10 (write-heavy)
- Search database: RAID10 (read-write mix)
- Content databases: RAID10 (read-heavy)

Performance Comparisons

Performance Tests

1. Same storage hardware, five different RAID configurations for the databases - RAID-5 with 5, 10, & 15 drives RAID-10 with 8 & 16 drives Logs on one RAID-10 set of 8 drives 2. Different storage hardware, same application configuration Two different SSDs SAS and SATA disk drives in various RAID configurations

Technology Environment

Servers:

- Dell PowerEdge 2900, dual Intel Xeon E5345 (2.33 GHz, 8 cores), 48GB & 32GB RAM, Windows Server 2008 x64 (qty. 2)
- IBM System x3650, dual Intel Xeon E5345 (2.33 GHz, 8 cores), 32GB RAM, Windows Server 2008 x64
- Intel Server S5000PSL with dual-Xeon E5320 (1.86 GHz, 8 cores), 4GB RAM, Windows Server 2003 x64
- Fibre Channel infrastructure:
 - Brocade 200e, 16-port, 4 Gbps FC switch
 - Brocade 300, 24-port, 8 Gbps FC switch
 - Emulex LPe11002, dual-port, 4 Gbps HBA (in IBM server)
 - Emulex LPe12002, dual-port, 8 Gbps HBA (in Dell servers)
- Storage:
 - Fusion-IO ioDrive, 160GB, SLC NAND-flash, PCI-express 1.1 interface, no cache
 - IBM DS3400 with 48 drives, SAS, 300GB, 15K RPM, 4-port, 4 Gbps FC
 - Intel SRCSASJV, 512MB Cache, supports up to 240 SAS or SATA disk drives
 - Seagate Barracuda 7200.11, SATA, 500GB, 7200 RPM, 32MB cache (qty. 10)
 - Seagate Cheetah 15K.5, SAS, 146GB, 15K RPM, 16MB cache (qty. 10)

Santa Clara, CA USA August 2009 • Texas Memory Systems RAMSAN-400, 128GB, DRAM SSD, 8-port, 4 Gbps FC

Performance Test Tools

1. Microsoft SQLIOSim

- Microsoft SQL Server(c) Simulator Stress Test Version 9.00.1399.05
- Simulates SQL Server I/O workloads
- 2. Microsoft Exchange Jetstress
 - Microsoft Exchange Server Jetstress Version 08.02.0060.000
 - Simulates Exchange Server 2007 workloads

Test 1 – SQL Server

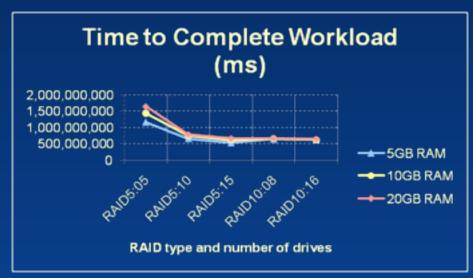
Microsoft SQLIOSim

- Different database for each RAID sets
- Log on same RAID10 set

Database parameters

- InitialSize = 25000 MB, MaxSize = 50000 MB, Increment = 100 MB, LogFile = No, Shrinkable = No, Sparse = No
- MaxMemory: 5GB, 10GB, 20GB

Test 1 – Exchange


Exchange Server 2007 profile

- 500 mailboxes
- Mailbox size = 250MB
- Exchange IOPS = 0.5 (heavy user)
- Threads = Auto (2)
- Storage Groups = 1
- DB volume size = 1000GB

Test 1 – SQL Server

(Run on large server with 48GB RAM and external 48-drive array)


Delayed I/O was reported frequently with the smaller number of drives and smaller memory sizes

RAID:Qt	5 GB	5 GB			20 GB	
RAID5:0	24,557	1,166,85		1,433,27		1.641.20
RAID5:1	23 577	661 576	22 311	741 603	19 434	788 324
RAID5:1	22 256	527 367	22,653	618 407	20 649	666 746
RAID10:	23 636	644 863	19 275	661 547	13 434	672 392
RAID10:	22,802	625,489	17,954	624 709	11,228	653,976

Test 1 – Exchange

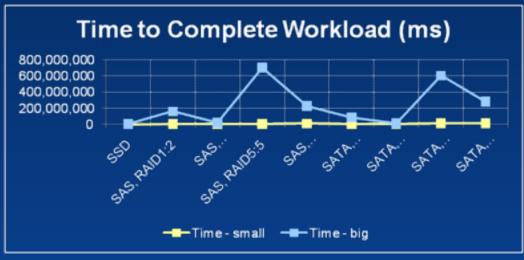
(Run on large server with 48GB RAM and external 48-drive array)

	RAID:	Achie			Log	DB Avg		Log
		201 0	150 10	11210	01 206	006	005	001
		2166	125 27	161 20	105 22	005	006	001
		257 0	101 75	166 10	100 70	001	006	001
		220 V	101 15	150 21	102 61	005	006	001
		250 2	102 50	166 20	100 25	001	006	001
Santa Clara, CA, USA								

Test 2 – SQL Server

Microsoft SQLIOSim Log on same RAID1 set Two sets of tests with different database sizes InitialSize = 500 MB, MaxSize = 1000 MB, Increment = 50 MB, LogFile = No, Shrinkable = No, Sparse = No InitialSize = 5000 MB, MaxSize = 10000 MB, Increment = 500 MB, LogFile = No, Shrinkable = No, Sparse = No

Test 2 – Exchange


Exchange Server 2007 profile

- 500 mailboxes (550 for SATA drives)
- Mailbox size = 250MB
- Exchange IOPS
 - SSD (no RAID) drives: 0.5 (heavy user)
 - SAS (RAID-1) drives: 0.5 (heavy user)
 - SATA (RAID-1) drives: 0.3 (light user)
- Two sets of runs
 - A Large server with 32GB RAM
 - B Small server with 4GB RAM

Test 2 – SQL Server

(Run on small server with 4GB RAM and internal drives)

			D ¹			
	~	07 000	4 - 4	<u> </u>		
			25 642	4 - 0 00		
	100			20 4 4 2		
				700 44		
				220.20		
CATA				201 11		

Small = 0.5GB - 1GB database Big = 5GB - 10GB database

For "Big" databases, SSD and RAID10 (8 drive) configurations had no delayed I/O. All other configurations of "Big" databases had delayed I/O of at least 15 seconds.

SSD = NAND-Flash SLC

Test 2 – Exchange

(Run on large server with 32GB RAM "A" and small server with 4GB RAM "B")

	RAID:	Achi	DB	DB	Log	DB	DB	Log
	רי חס	うどうろ	166 /	2157	2761			
	<u>SCD·N</u>	2203	1726	1066	600 /	0 000	0 000	0 000
	CCU·N	1207	688 0	620 7	<u>/1/ 0</u>			
	CVC D	257 0	101 7	166 1	100 7	0 001	0 006	0 001
	CVTV	330 1	121 1	158.2	1026	0.005	0.006	0.001
inta	a Clara, CA USA							

Futures

- I believe that at the current rate of price decreases, flash SSDs will become the new standard for tier 1 storage within three years
- Research is underway on other types of memory technology that may become good candidates for storage devices
 - Other sessions here at the Flash Memory Summit will discuss these other technologies

References: SQL Server

- SQL Server 2005 pre-deployment I/O Best Practices <u>http://www.microsoft.com/technet/prodtechnol/sql/bestpractice/</u> <u>pdpliobp.mspx</u>
- SQL Server 2005 I/O Basics <u>http://www.microsoft.com/technet/prodtechnol/sql/2005/</u> <u>iobasics.mspx</u>
- Database Engine I/O Requirements: <u>http://support.microsoft.com/kb/967576</u>
- Tempdb requirements: <u>http://support.microsoft.com/kb/</u> <u>917047/en-us</u>

References: Exchange

Exchange Server 2007 Storage Guidelines <u>http://technet.microsoft.com/en-us/library/bb124518.aspx</u>

References: SharePoint

SharePoint Server 2007 Best Practices <u>http://technet.microsoft.com/en-us/office/sharepointserver/</u> <u>bb736746.aspx</u>

Contact Information

Dennis Martin, President <u>Demartek</u> (303) 940-7575 <u>dennis@demartek.com</u>

www.linkedin.com/in/dennismartin http://twitter.com/demartek

blog: www.wikibon.org