

Error Correcting Techniques for Future NAND Flash Memory in SSD Applications NAND Flash Memory in SSD Applications

Nelson Duann

Silicon Motion, Inc.

Tel: +886-2-2219-6688nelson.duann@siliconmotion.com 3F, No. 100, Mingcyuan Rd., Sindian City, Taipei, Taiwan

- **The Challenges on NAND Flash in SSD Applications**
- n Main Mechanisms of Bit Errors
- **Trends and Developments of Error Correcting Code**
- **Error Distributions**
- **Efficient BCH Decoding and LDPC Code**
- Reliability Issues of Multi-Channel SSD Applications
- **Techniques to Improve the SSD Performance**
- **Conclusion**

Signal Processing makes quality wireless communication possible

Memory The Challenges on NAND Flash in **SSD Applications**

- **Reliability of NAND Storage cells**
- n Program/Erase Count dramatically drops
- System stability becomes a critical issue in multichannel SSD.
- **After applying Error Correcting Code, the bit error** rate is typically $10^{\text{A}}-13$ to $10^{\text{A}}-16$.

- n Write errors
- n Retention errors
- \blacksquare **Read-disturb errors**
- The following figure shows the distribution of cells in four levels for MLC flash. Bell-shaped curves represent the probability distributions of the four Vt levels.

- **The overprogramming failures are caused by cells** being intentionally programmed to one level but ended up too high.
- **Erratic tunneling caused by unstable positive charges.**
- The cell may be moved if adjacent cells are later programmed.
- Products from different manufacturers have different occurrence probabilities.

- \blacksquare Mostly due to charge loss
- Cells lose charge and thus move from one Vt level to the one below.
- Some flash: $V3\rightarrow V2$, and the others: $V2\rightarrow V1$.
- Г The retention problem can be improved by SMI Intelligent Global Wear Leveling.

 When a read operation is applied on one cell, the other cell may be regarded as weakly programmed.

- In MLC flash cells, the complex combination of the three main mechanisms leads to partly burst bit errors and partly random errors.
- **The ECC types developed are moving from Hamming** code (correct fewer errors), RS-code (correct burst errors), to BCH code (correct large random errors).
- In the BCH code, the codeword (CW) length increases from 512B to 1K or 2K Bytes.

Why Need Larger Data Sector?

4K Byte data + 52 Byte-spare:

- Sector size 4K Byte \rightarrow 26bit ECC
- Sector size 2K Byte \rightarrow 13bit ECC
- Sector size 1K Byte \rightarrow 7bit ECC
- Sector size 512 Byte \rightarrow 4bit ECC
- The larger the sector size, the better the performance of correction capability.

Error Probability Distribution Before/After Applying Error Correction Code

- \blacksquare The guaranteed error bit correction is important in SSD applications.
- \blacksquare **Better BCH Codec**
	- Smaller
	- \bullet Less power
	- \bullet Higher code efficiency
	- Shorter correction time
- SMI can achieve a power-efficient BCH decoder and accelerate the decoding speed in some error cases
	- we only need extra 1000 gate counts to find the error location within 10 cycles.
- \blacksquare But, for future advanced process node flash, is BCH good enough?

More Bad News -- Relationship Between Strong Page and Weak Page

- **The error in strong page corresponds to the content** in weak page?
- If V3 is a more stable state, we may increase the probability of this programmed state by using the data shaping method.

The right correlation between two CW in strong page and weak page needs a smarter data shaping mechanism.

FlashMemory Techniques to Improve SSD Performance

- **Data Shaping**
- **Faster Correction with Multi-Layer ECC**
- **Soft Decoding of LDPC**
- **Dynamic ECC Strategies**

Memory Smarter Data Shaping Algorithm

- $\begin{array}{c} \hline \end{array}$ Execute the correlation evaluation and select the best generator to increase the system stability.
- \blacksquare The appended side-information can be regarded as an extra redundancy.

Faster Correction with Multi-layer ECC

- As the occurrence rate of correctable CW increases, the error correcting process and data read performance becomes critical to high throughput host interface.
- **Code concatenation increases the decoding speed.**
- \blacksquare Small sectors share the same large parity group.
- The small sectors can start decoding and correction process before receiving complete CW.
- **If only a fewer error bits are distributed in different** sectors, it is not necessary to launch the large parity decoding scheme.

Data-2 (128B) Data-1 (128B) **Parity-1 Parity-2**

Parity-8 Data-8 (128B)

1K/24 ECC parity 336bits

- Compared to BCH, the current LDPC (Low Density Parity Check) cannot guarantee such a low error floor by using the hard-decision decoding with the same coding rate.
- **Powerful ECC decoding needs soft-decision** information because soft-decision decoding improves correction capability

- **The reliability of flash cell varies in a large region as** the levels increase.
- **Dynamically adjust the ECC capability may increase** the data reliability in an efficient way.
- Each channel should have respective data protection strategy, depending on data properties, data importance and the lifetime of flash cell.

- **Redundant data may provide further advantages** besides of error correction.
- **LDPC is one of powerful and high efficiency** technologies which may be widely applied in the future SSD applications.
- SMI is one of the manufacturers that can provide the most advanced memory storage technologies.

- \blacksquare *N. Mielke, T. Marquart,…"Bit Error Rate in NAND Flash Memories", 2008.*
- *A. Brand, K. Wu,…"Novel Read Disturb Failure Mechanism Induced By FLASH Cycling" 2003, IRPS.*
- \blacksquare *N. Mielke, H. Belgal,… "Recovery Effects in the Distributed Cycling of Flash Memories," 2006.*
- \blacksquare *IDEMA standard R2-98, "Specification of Hard Disk Drive Reliability"*
- *J. Lee, C. Lee, …"A New Programming Disturbance Phenomenon in NAND Flash Memory by Source/Drain Hot-Electrons Generated by GIDL Current," IEEE NVSM 2006*
- \blacksquare *C. Compangnoni, A. Spinelli,… "First evidence for injection statistics accuracy limitations in NAND Flash constant-current Fowler-Nordheim Programming," IEDM Tech Dig. 2007.*
- \blacksquare *J. Brewer and M. Gill, eds., "Nonvolatile memory technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices," Wiley-IEEE Press, 2008*
- \blacksquare *J. Gray and C. van Ingen, "Empirical Measurements of Disk Failure Rates and Error Rates," Microsoft Research Technical Report MSR-TR-2005-166, 2005*

