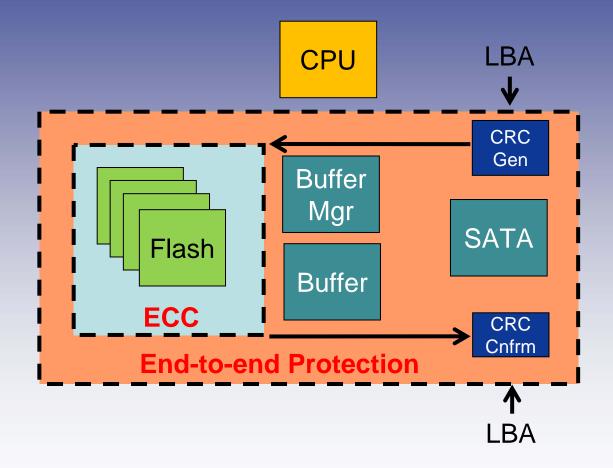


## A Closer Look at SSD Data Integrity Requirements

## Andy Tomlin VP Firmware & Software






## Data Integrity in an SSD has similarities and differences with other storage systems

| Error Correction<br>(ECC)            | Similar to HDDs, although differing defect types may result in different preferred correction codes                   |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| End-to-end<br>Protection (CRC)       | Typically only used on Enterprise HDDs & SSDs                                                                         |
| Correct Address<br>Translation (LBA) | Not a big problem on disk drives, major challenge<br>on SSD's. Solutions may be coupled with end to<br>end protection |
| Correct Version of Data              | Old vs. new data selection from block recycling only performed in SSDs                                                |











- All SSDs have some level of ECC on the Flash
- Typically BCH or Reed Solomon
- Requirements vary depending on
  - Process technology (5x, 4x, 3x nm)
  - Bits per cell SLC, MLC (D2, D3, D4)
- ECC protects from Read disturb, Program Disturb, and endurance and retention page level effects
- Does not protect from Block level failure
  - More advanced controller design required for block level failures, typically required for Enterprise storage





- Uncorrectable Bit Error Rate must be higher for SSDs due to higher transfer rates
- High-end HDDs in the enterprise provide <1 sector error per 10^16 bits read
  - Sufficient for HDDs at 50-100 MB/s transfer rate
- SSDs that transfer 250 MB/s would show up to 5x the errors with this UBER
- SSDs will require protection to 10^17 bits read





- Flash errors are not the only source of data integrity issues
- Modern controllers have large RAMs requiring ECC detection / correction
- Hardware and Firmware bugs can result in incorrect transfer of data from flash or address translation errors
- These types of errors are undetectable without some form of end to end protection, typically some form of CRC seeded with LBA





- All SSDs can suffer from a problem of returning old data
- Assumes address translation functions correctly, returning old version of correct LBA. Not detectable with end to end solutions.
- Typically induced by power failure coupled with Firmware bug
- No simple solution
  - Super Cap solutions may be effective for Enterprise systems
  - Requires extensive, directed testing





Testing Methodologies For Validation of Correct Version of Data

- Must detect address translation and address versioning issues
- Data tagging
  - LBA to detect address translation errors
  - LBA versioning
    - Incrementing count for every command
    - Test system maintains table of count indexed by LBA.
      Note that this can create test infrastructure challenge:
      512G SSD with 2Byte count per LBA = 1G RAM







- Data Integrity in an SSD has similarities and differences with other storage systems
- All SSDs have ECC protection, but new Flash generations will require higher levels of protection
- Enterprise SSDs will require UBER of 10^17 due to high transfer rates
- CRC and LBA checking can provide end-to-end protection for enterprise environments
- Validation of "correct version of data" can only be done with directed testing

