

SSD Performance Tutorial

SSDs and SSSI Testing

Developing Test Standards for SSD

Performance

Eden Kim, CEO Easen Ho, CTO

- Introduction
- SSSI Performance Test Suite Specification
- Factors Affecting SSD Performance
 - Pre-Conditioning
 - Effect of Spares on Performance (TRIM Simulation)
 - Idle Effects
- Summary

Spotlight is now on....

- Innovation in architecture to manage flash performance characteristics
- Matching device characteristics to application needs
- Defining device-level reliability and data-integrity metrics
- Understanding performance issues

Current SSD Landscape

- Lots of variability
 - in specification
 - in actual performance
 - in cost metrics
- NO standard for specification disclosure
- NO standard for performance measurements
- Technology/products keeps changing
 - more controllers; more interface choices
 - new 3X-nm flash brings new issues
- Need for Performance Test Standards!

SSD Blind Surveys for SNIA SSSI

- Common hardware & software environment provides basis for performance comparison
- SSSI Reference Test Platforms Multiple OS Capability, Standard Test Methodology
- Multiple, Parallel, Asynchronous Test Bays

- SSS TWG Performance Test Metrics
- Both synthetic RAW Device & System Level Composite Tests

y Scope of Blind Study

- SSD Blind Survey No. 1 (BS1) 2.5" SATAII SSDs circa Dec. 2008
 - Conducted by Calypso Systems & SSSI
 - Presented at SV09 & SNIA Symposium Jan 2009
 - Incorporated into SSS TWG Performance Test Suite Draft
- 2nd & 3rd Generation SSDs under BS2 investigation Aug 2009
- Performance Test Data provided to SNIA Tech Working Group for development of SSD Performance Specifications & Standards
- Work is on-going
- Call to Vendors to submit SSDs for Evaluation / Inclusion in Studies
- Plans for SNIA Tech Center SSD Test Lab

- Introduction
- SSSI Performance Test Suite Specification
- Factors Affecting SSD Performance
 - Pre-Conditioning
 - Effect of Spares on Performance (TRIM Simulation)
 - Idle Effects
- Summary

Goal of Any Performance Measurement Specification

Repeatable	common starting point; common procedures
Stable	test at steady state
Applicable	results relevant to user's conditions
Comparable	fair device-to-device comparison
Practical	completes with reasonable time and effort
Accessible	open specification; 3 rd party validation

SNIA TWG Working to Define Performance Tests

Methodology & Metrics

Defines test preparations, test procedures, and reporting requirements

IOPS Test

- Generates 3D surfaces for IOPS, Bandwidth, and Response Time
- Data taken at various Block Sizes, R/W Mixes, Queue Depths, and Threads
- Various Pre-Conditioning Regimes being investigated
- Includes procedure for TRIM Simulation

Idle Test

- Looks at effect of Idle on garbage collection & performance recovery
- Latency Test at different Queue Depths & Threads
- Composite Application Tests (TBD)

Other Activity Areas

- "Purge" or SE for SSDs
- Workload capture What are the "Real World" Uses and performance under those use cases?
- Are SSDs Performance Measurements "Real World?"

Thought on Real world Workloads

"the Methodology used by the EPA is somewhat abstract"

"The high mileage figure, though, is not a meaningful number to many consumers as it doesn't represent real world driving...."

Chevrolet Volt introduction Aug 11, 2009

- Introduction
- SSSI Performance Test Suite Specification
- Factors Affecting SSD Performance
 - Pre-Conditioning
 - Effect of Spares on Performance (TRIM Simulation)
 - Idle Effects
- Summary

Many Factors Impact Performance

- Hardware (CPU, interface, chipset...)
- Software (OS, application, drivers, various caches, SSD-specific "TRIM", "Purge"...)
- Device (flash generation, parallelism, caching strategy, wear-leveling, garbage collection, warranty strategy...)
- Write History (TGW, spares...)
- Workload (RND, SEQ, read/write mix, queues, threads...)
- Pre-Conditioning (RND, SEQ, amount...)

The 800-lb Gorillas...

Workloads & Pre-Conditioning are Difficult Issues

Workloads

- "My Workload is better than your Workload"
- Captured Workloads: hard to get and to use; narrow (but accurate) applicability
- Synthetic workloads: easy to get and to use; generally useful (while making no one completely happy)

Pre-Conditioning

- What kind?
- How much?
- Does it need to match Workloads?

Pre-Conditioning

Why Pre-Condition???

Performance States Can Be Complex....

Need for Pre-Conditioning

- Previous slide points out:
 - Need for common terminology
 - Short "Burst" performance when FOB
 - FOB state not important unless drive can return to FOBlike performance somehow
 - Performance can change dramatically with time
 - Can have many transition phases
 - performance comparison valid only under same conditions

Pre-Conditioning Necessary To Get Drive Into Known State

Dimensions of Pre-Conditioning

- Access Pattern
 - RND or SEQ
 - Workload-based
- Access Range
 - Full LBA or limited LBA
- Data Amount
- Data Pattern
 - Uniform (0,1)
 - RND
 - Workload-based

SSSI TWG Looking At Various Pre-Conditionings

- Type I Pre-Conditioning (100% Full Fill)
 - Writes starting LBA=0, using entire LBA range available to user
 - e.g. Write 128K sequential, total amount written equaling 2X User Capacity

- Writes restricted to 75% of LBA range available to user
 - 1. Write 128K sequential, total amount written equaling 1X User Capacity
 - 2. Write 4K random, total amount written equaling 1X User Capacity

150G-Class MLC Trim/Spares Are Good...

NM12 IOPS: Type I PC, Full LBA Test

NM12 IOPS: Type II PC, 75/25 Trim Simulation

150G-Class MLC Significant Effect on Writes...

NM12 IOPS: Type I and Type II, 100% RND Write

100G-Class MLC Trim/Spares are good....

JM1 IOPS: Type I PC

JM1 IOPS: Type II PC 75/25

Santa Clara, CA USA August 2009

100G-Class MLC Overall write improvements...

JM1 IOPS: Type I

JM1 IOPS: Type II 75/25

R/W Mix (%)

R/W Mix (%)

Block Size (KB)

100G-Class MLC

JM1 IOPS: Type I and Type II, 100% RND Write

- Clear need for performance standards
- Need to identify both client and enterprise performance issues
- SSSI is actively working in this area! Stay tuned for more!

Join SSSI!

