
1

New Abstractions for Fast 

Non-Volatile Storage

Joel Coburn, Adrian Caulfield, 

Laura Grupp, Ameen Akel, Steven Swanson

Non-volatile Systems Laboratory
Department of Computer Science and Engineering
University of California, San Diego

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


2

How do you re-engineer a system 

where disk is as fast as DRAM?

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


3

Storage System Architecture

of the Future

CPU CPU

Cache
(SRAM)

Memory 
Controller

I/O 
Controller

DRAMDRAM

Disk

1X latency

~10000X latency

PCMPCM

STTMSTTM

PCMCMOx

PCMTAS-MRAM

~1-10X latency
IO access time ≈ nanoseconds!
(read hit in L1, L2 caches)

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


4

System Stack for Disk

Disk

Storage 
access, allocation, naming, 

organization, protection

Application
User
space

Operating
system

Hardware

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


5

Yesterday’s Interfaces for 

Tomorrow’s Storage

0 1000 2000 3000 4000 5000 6000 7000

Fast 
NVM

SSD

Disk

Latency (usec)

Random read of 4KB page

System Call
File System
Hardware

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


6

Amdahl’s Law strikes again!

0 50 100 150 200 250

Fast 
NVM

SSD

Disk

Latency (usec)

Random read of 4KB page

System Call
File System
Hardware

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


7

Can be slow

Needs to be fast• Access data
• Persistence & consistency (safety)

– Holds data until it is explicitly deleted
– Recovers from system crashes

• Other stuff
– Structure/organization for data (directories)
– Allows sharing of data between processes, users, and 

machines
– Provides protection from data theft or destruction 

(security)
– Basic operations: create, delete, open

Why do we have file systems?

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


8

Criteria for New Abstractions

• Memory-like interface
– Rich, non-volatile data structures implemented in the 

same way that volatile data structures are 
implemented—direct load/store access to memory

• Persistence and safety
– Data structures should be robust against application 

and system failure

• High performance
– Application level access latency should as close as 

possible to latency of the storage technology

– Leverage caching in the memory hierarchy 

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


9

Application

NVTM

System Stack for Non-Volatile 

Memories

User-
space

Allocation & garbage 
collection

Operating
system

Hardware

Non-volatile memory 
allocation, mapping, and 

protection

Non-volatile memory

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


10

Memory (DRAM)

Heap

The Old Way: Volatile Heap

• A program accesses a 
single heap in volatile 
memory

– Build rich, pointer-
based data structures

• Serialize/de-serialize 
to transfer data 
to/from storage

Volatile

Non-volatile

Disk

0
1
1
0
1

101100
101000
110111

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


11

The New Way: Non-Volatile Heaps

• We want to have 
multiple heaps in non-
volatile storage
– Appear in the 

application’s address 
space just like memory

– Rich, pointer-based data 
structures live directly in 
storage

– Challenge: provide safety 
guarantees

Non-Volatile Storage (i.e. PCM)

Heap A Heap B

Heap C

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


12

Accessing Non-Volatile Heaps: 

Transactions

• Used by databases to make guarantees about 
storage

• Now also used to manage concurrent access 
to volatile memory in multi-core systems

• Definition: a sequence of operations that is 
atomic and durable

• Give us guarantees against
– Failures

– Concurrency issues

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


13

Transactions: How they work

1. Begin transaction
2. Perform operations

– Record the state of any data that is read or written 
in a log to be played back later if the transaction fails

3. If no conflicts, then commit (makes permanent)
– Conflict: data was changed by another transaction 

during execution

4. If conflicts, then abort and rollback (undo)
– Replay the logs to restore old values

5. End transaction

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


14

A Simple Example

• We have a linked list in non-volatile storage

• We want to insert a node in sorted order

• Requirement: If we crash, our list must remain 
in a good state

– Either the node is added or it is not

– No wild pointers, missing links, etc.

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


15

Heap

NVHeap

3

A Simple Example

Insert(Node *node) {

Node *curr, *prev;

atomic {

curr = head;

prev = NULL;

while (curr->value < node->value 

&& curr->next != NULL) {

prev = curr;

curr = curr->next;

}

prev->next = node;

node->next = curr;

}

}

2 4

curr

head

Write Log Read Log

Transaction
Begin

Volatile

Non-volatile

prev

node

2

4

2

3

Transaction
Read

Transaction
Write

Transaction 
Commit

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


16

Transaction
Write

Heap

NVHeap

3

A Simple Example

Insert(Node *node) {

Node *curr, *prev;

atomic {

curr = head;

prev = NULL;

while (curr->value < node->value 

&& curr->next != NULL) {

prev = curr;

curr = curr->next;

}

prev->next = node;

node->next = curr;

}

}

2 4

curr

head

Write Log Read Log

Volatile

Non-volatile

prev

node

2

4

2Transaction 
Abort

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3


17

Conclusion

• New non-volatile memory technologies have 
the potential to revolutionize computing

– DRAM-like performance (both sequential and 
random access) + density + persistence

• Re-designing these abstractions will unleash 
the full potential of these technologies!

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3

