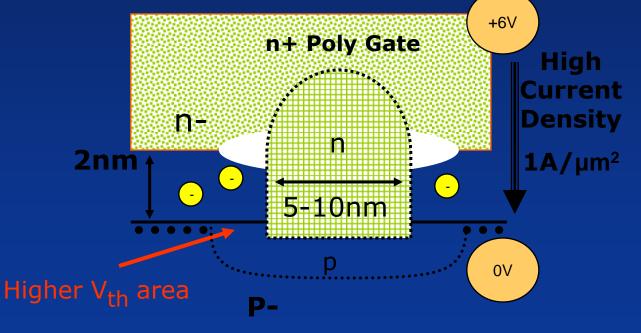


A Novel Embedded OTP Memory Bit Cell Based on Oxide Breakdown

Jim Lipman Sidense Corp.

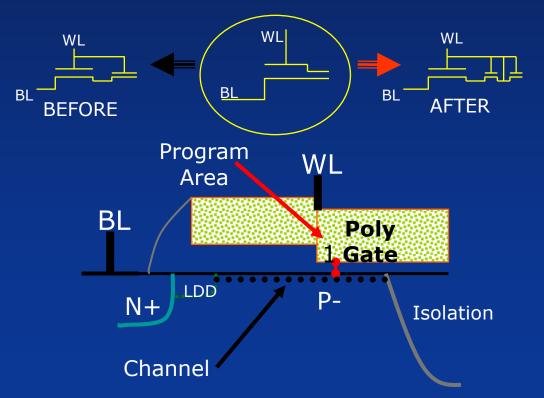
Santa Clara, CA USA August 2009

- IT-Fuse OTP Overview
- Oxide Breakdown Mechanism
- 1T-Fuse Bit Cell
- Scaling
- Performance
- Reliability
- Security
- IT-Fuse OTP Summary


1T-Fuse OTP Overview

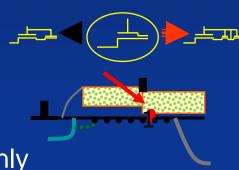
- The bit cell is antifuse-based
- Programmed by predictable, irreversible gate oxide breakdown
- Basic technology around for about 20 years
- Oxide breaks down at ~5-8V
- Gate current increases up to 10,000x
- Standard logic CMOS processes
 - No additional masks or process steps

Oxide Breakdown – Nano-Scale Crystallization


- \circ Positive gate voltage \rightarrow High E field across gate
- \circ Tunneling current \rightarrow Current increases
- \circ Oxide melts in breakdown region (~1mA/mm²) in <100ns
- Nanoscale diode-connected NMOS transistor formed

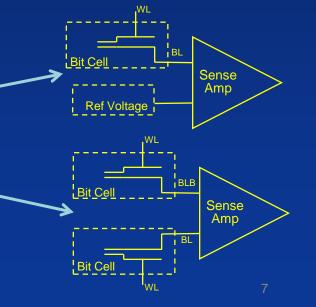
Split-Channel 1T-Fuse[™] Bit Cell

- Solution: remove LDD from breakdown area
 - 1T-Fuse breaks only in the channel area
 - → No channel tail
 - \rightarrow no dependence on foundry-specific "tweaks"



Scaling

Typical NVM Cell Scaling Problems

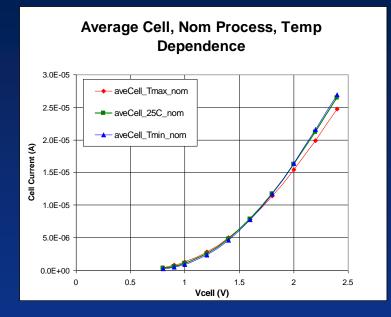

- Process node and foundry dependence
- Minimum poly gate size
- Additional fabrication steps
- IT-Fuse Solution
 - No process node or foundry dependence
 No LDD or threshold adjustments
 - No critical poly lithography
 - Predictable programming voltage
 Function of effective oxide thickness only

Performance

- Typical NVM Problems:
 - 1. Temperature Range
 - 2. Read Power
 - 3. Area
 - 4. Speed
 - 5. Voltage Range
- IT-Fuse Solutions
 - 1. No Temperature sensitivity
 - 2. Minimal read power, no cell current flow
 - 3. Single-ended read = Small Area
 - 4. Differential = Fast Access
 - 5. Differential = Wide Voltage Range

Process/Temperature Sensitivity

Average Cell 25C Process Dependence


No Fast/Slow Process Sensitivity

Vcell (V)

1.5

2

2.5

No Temperature Dependence

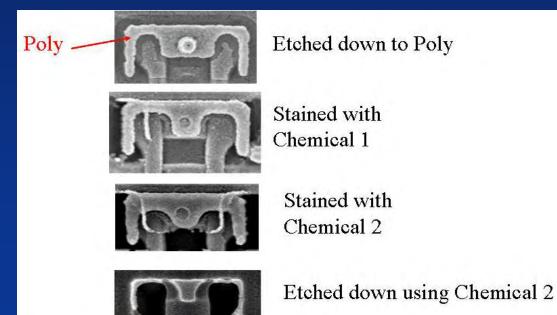
0.0E+00

0

0.5

Reliability

- Typical NVM problem
 - Retention at High Temp
- IT-Fuse Results
 - Multiple Foundries and Nodes
 - 125C AHTOL 4 ¹/₂ million Mbit-hours PASS (no failures)
 - 150C HTS 4 million Mbit-hours PASS (no failures)
 - **TDDB** testing used to predict retention
 - > 20 years at maximum read voltage at 125C with 50% duty cycle
 - > 100 years at 150C in differential mode


What About Bit Cell Security?

- IT-Fuse:
 - Does not depend on charge storage

Active

Extremely difficult to reverse engineer

Bit 1 Bit 2

Santa Clara, CA USA August 2009

1T-Fuse OTP Summary

- Very small, fast and reliable OTP bit cell
- Programming mechanism is irreversible oxide breakdown
- No additional masks or process steps needed
- Broad foundry and process node coverage
- Scalable to 32/28nm and below