

Future Trends in Flash Drive Encryption

Devesh Ahuja Vijay Ahuja, Ph.D. Cipher Solutions, Inc.

Flash Memory Summit 2010 Santa Clara, CA

HOST-BASED USB access controlled through the host

Encryption material saved in the host

User needs to enter a secret/password to

- Access the drive
- Decrypt the data

STANDALONE DEVICE SECURITY Password level security

Additional Measures to increase security

Token/ Cards for stronger authentication

- Monitor/restrict files going to the Flash
 - Port Controls
 - Log meta data of files to and from the Flash
 - Need to maintain and secure the logs
- Authenticate the user
- Encrypt files to prevent disclosure
 - Need to maintain and secure the Keys and the Algorithms
 - Password-based keys commonly used

Future of Encryption

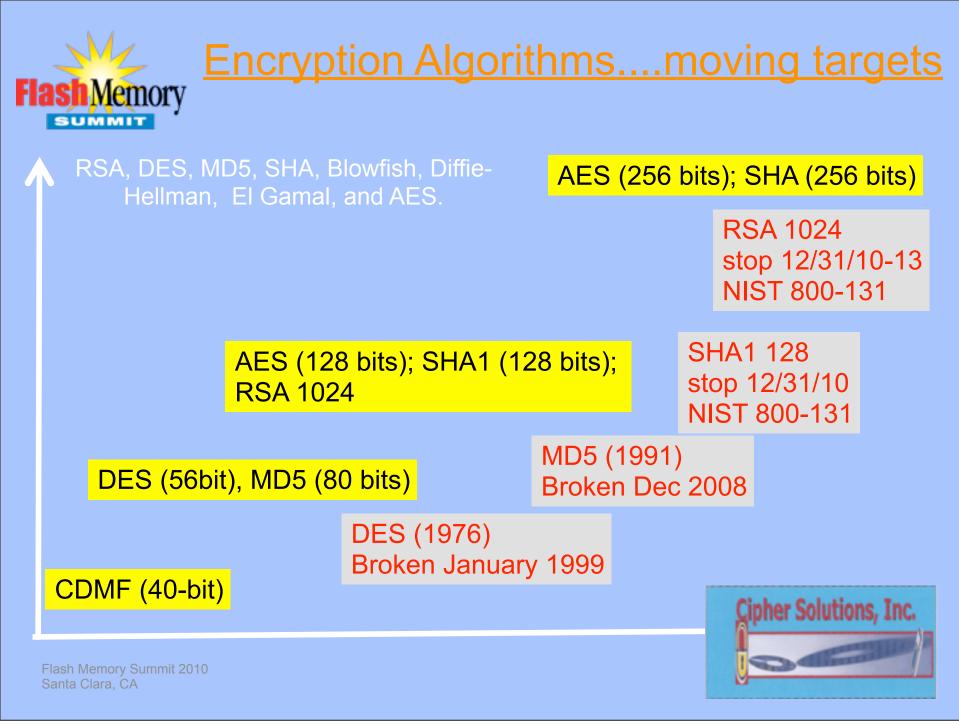
ENVIRONMENT OF INCREASING INSECURITY

- Expanding enterprise home offices
- Increasing communication devices
- Mobility
- Growing email traffic
- Growing personal information
- Increasing storage sizes
- Social sites
- New and emerging threats to data

Future Trends in Encryption -

ENCRYPTION IS NEEDED EVERYWHERE.... BUT...

- 1. Should be Simpler and Easier to use
- 2. Should Cost less
- 3. Should yield Higher performance hardware?
- 4. Should comply with more and more of:
 - Government Regulations: GLBA, HIPAA, SB1386,...most states have regs for Privacy Protection
 - Industry Standards: NIST; ISO 11568-1, 11568-2, 11568-4;
 PCI; IEEE P1619; ..
- **Should be Ubiquitous What about Interoperability?**


Key Management Issues – Keys needed for 10 or 20 or ?? Years

- Key retention for stored data years
- Keys are NOT easy to upgrade
- Keys are not easy to be:
 - Secured
 - Available
 - Backed-up
- Key management technologies do not address the issue of aging
 - Key & Algorithm refresh every 5? Years
 - To resist brute-force attacks
- Secured keys are often as secure as passwords (+ Tokens!!)
- Backed up Keys help but introduce new issues
- Lost keys may be as bad as losing data Flash Memory Summit 2010 Santa Clara, CA

NIST 800-131

FlochM	NIST 800-131			
SUM	ALGORITHM	SIZES	EQUIVALENT STRENGTH	
Flash Mem Santa Clara			80 bits	
			80 bits	
			112 bits	
			80 bits	
			80 bits	
			Cipher Solutions, Inc.	
	AES-256 Encryption	Acceptable	200 005	

Flash Memory Transition

Hash Function	Usage
SHA 1	
SHA-224,256,384,512	

Flash Memory Challenges for upgrading Keys

Example – PKI Certificate Signing Keys: SHA1 (128) -> 224/256 bits

- If a CA signs a Certificate with SHA 2, and the Relying Party (e.g. Web Servers) cannot handle SHA 2, the authentication fails
- Need to test various combos of:
 - End user Certificate
 - CA's OCSP/CRL signing certificate
 - Issuing CA's End-entity Signing Certificate (Trust Chain to be all SHA2)
 - Relying Party's capability to verify SHA2 signatures
- DUE 12/31/2010

FlashMemoryKey Management – Cryptographic Key Storage

- Password-based keys => Security equals password security
 - Change passwords (keys) frequently
- Key Systems Used for storing encrypted data
 - Secured Key Storage Devices
 - Key Management Servers
- Interact with Other Cryptographic Devices
 - Smart Cards
 - Memory Cards
- Storage of Keys Offline
 - Tape
 - Optical

Key Management – Protecting Keys

Non-Cryptographic Protection

- Time Stamps Restrict Key Use to Specific Periods
- Sequence Numbering Limit Re-Play Attacks
- Multiple key shares "k of N"

Cryptographic Protection

- Hardware Security Modules
 - Secure cryptoprocessor
 - Targeted at managing digital keys
 - Accelerating in terms of digital signings
 - Providing strong authentication to access critical keys for server applications
- Companies that manufacture HSMs: Luna, Ncipher. Thales. HP. Safenet, etc.
 Cipher Solutions, Inc.

Cipher Solutions, Inc.

Cipher Solutions, Inc.

PROVIDING IT SECURITY SERVICES SINCE 2001

Department of DefenseLargest BanksStorage Networking VendorsIT Security VendorsStorage Security Vendors

IA Services for Federal/State Governments IT Security Design C&A using DIACAP Key Management; Data Security IPSec, SSL design	PKI Services • PKI Design – from RFP/vendor-selection to delivery of Millions of certificates • Develop CP, CPS and Sub Agreements • Key Management Design and deployment • Best Practices for Key Lifecycle
	Management ofPKI and Symmetric keys Support Web Trust Audit Digital Signature application design
 Application Security Services Security Design of large application PKI-usage and design for Key Management Application PKI-enabling of applications Security design for future Application Architectures 	 <u>Data Security Services</u> Data Security newsletter Estimating Data Risk – Developed a new approach for computing Risk metrics Disaster Recovery plan Storage Security monthly newsletter Assessing Risk (metrics)

Cipher Solutions, Inc.

THANK YOU

Dr. Vijay Ahuja President Cipher Solutions, Inc. vijay@CipherSolutions.com 1-919-848-3040

