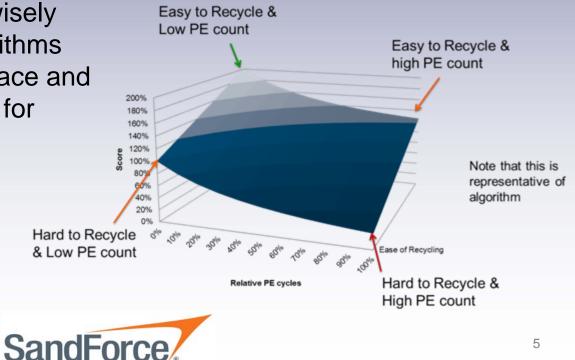


A Look Under the Hood at Some Unique SSD Features

Jeremy Werner Director, Marketing SandForce, Inc.

- Firmware Design must consider key SSD attributes
 - Performance
 - Reliability
 - Endurance
 - Power Consumption
 - Security and Integrity
 - Flexibility

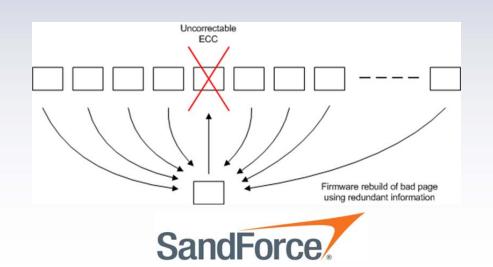
- SATA NCQ supports sending up to 32 commands to SSD prior to completion
- Supporting NCQ can significantly improve random read and write performance
- Firmware must be able mange the queue
- Service commands strategically out of order to achieve greatest performance
- Queued commands complicate
 error handling

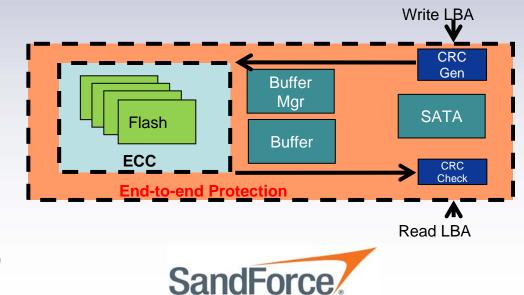

- Flash parallelism is a major factor in SSD performance
- Multi-plane allows programming more than one Flash plane at a time
- Multi-LUN allows programming/reading from more than one die per CE
- Goal Keep all dies active at all times

Recycling/Garbage Collection

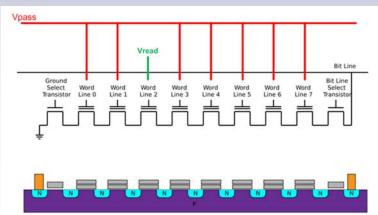
- The process of moving data in flash to create ۲ empty blocks to write to
- Steals Flash bandwidth from the host
- Efficient Recycling is a MUST
- Support TRIM to reduce the amount of data which must be moved
- Choose your blocks wisely lacksquare
 - Block picking algorithms must factor free space and factor cycle counts for Wear leveling

- Low cost (MLC/TLC) is optimized for consumer applications (USB, card, MP3)
 - Just enough Spare area per page to meet these requirements
- SSDs need more ECC for lower UBER (10⁻¹⁷)
 - Up to 80bit/1KByte for 20nm class NAND



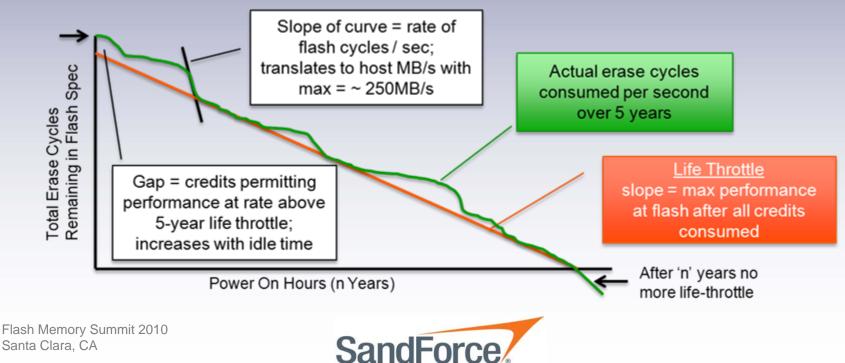

Advanced Error Recovery

- Advanced Error Recovery Techniques are needed
- Ability to recover completely lost sectors, pages, blocks
 - SandForce supports RAISE™
- Handle error recovery and notification
 - Rewrite recovered data
- May need to overprovision to enable extra reliability



- End-to-End Cyclic Redundancy Check (CRC) must be supported for Enterprise SSDs
 - Manage the remainder
 - Error handling

- Read Disturb is a growing source of flash errors
- Must track reads to blocks efficiently
- Must move data when a block is read too often
- Beginning of life and End of life behaviors differ greatly
- $100K \rightarrow 10K \rightarrow ?$ Reads
- Page and Block sizes
 increasing
 - More Data to move means increased WA and overhead


- Write Amplification can extend Flash life or kill it!
 - Page Based vs. Block Based Volume Manager
 - DuraWrite[™] SandForce Write Reduction Technology
 - TRIM
 - Background Garbage Collection

- Some users may want to guarantee flash usage will meet a calendar duration
 - FW can limit writes if drive is used too heavily

Designing FW for Power Consumption

- SSDs must fit within their power envelope
- Designing an SSD without DRAM helps but complicates FW
 - Must meet all requirements with limited volatile memory
 - Means Mapping algorithms must be outstanding
- 2 possible limiting factors
 - Peak Power (3W-25W)
 - Thermal Dissipation (Varies Greatly)

• State based power Management Techniques

- Serial ATA Power Management
 - Active, Idle, Standby, Sleep
 - PUIS Power Up in Standby
- PHY Power Management
- Generally these:
 - reduce power consumption
 - increase wake-up latency

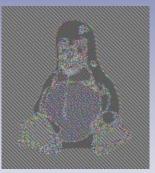
Controlling Peak Power

- Two main contributors to power consumption: Flash and Processor
- To control max power limit the number of active Flash die
- Different applications have different requirements
 - SATA 2 to 5W typical
 - SAS 9W typical
 - PCIe 25W typical
 - Give the power to the customer!

Temperature Management

- Monitor surface temperature with onboard sensors
- Allow maximum performance in typical conditions
- Manipulate behavior under extreme temperatures

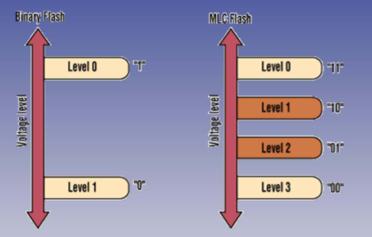
Secure User's Data


- Use encryption to ensure confidentiality
 - Not all encryption methods are created equally
 - SW often uses Electronic Codebook (ECB) mode
 - SW encryption has a high cycle overhead vs. HW
 - SW must manage keys that HW uses securely
- Destroy User Data
 - Secure Erase
 - Sanitize
- Multiple Standards to Implement
 - ATA Security, TCG Opal/Enterprise, IEEE 1667
 - TCG Enterprise Requires multiple user bands
- Industry wide collaboration is critical
 - Ecosystem must work together

Flash Memory Summit 2010 Santa Clara, CA

Original

Encrypted using ECB mode



Other modes than ECB results in pseudo-randomness

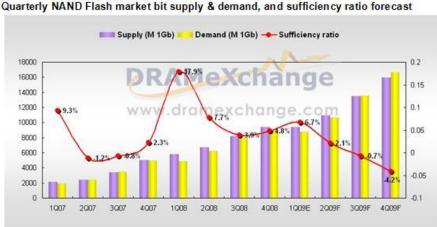
Protect User's Data

- Guaranteeing data integrity is difficult
 - MLC much harder than SLC
 - Lower Page Corruption is little known issue

Source: Electronic Design: MLC Challenges Mobile-Entry Barriers

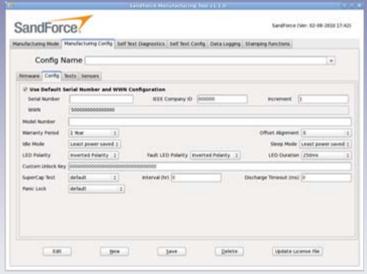
- Absolutely Required in Enterprise applications
 - Previously written data
 - Data in flight
- Use supercap to protect against sudden power loss
 - Designing for no DRAM is an important element
- Monitor supercap health to ensure capability

Mapping Strategies for Integrity and Availability


- 1. Full Map resident in Flash Best Approach
 - Must end there eventually
 - Easier power failure recovery techniques
 - Very Complex Algorithms
- 2. Cache full map in DRAM
 - More costly and power intensive
 - Difficult to power fail
 - ECC on DRAM components is not typical
 - Easier lookup and algorithm design
- 3. Cache partial map in DRAM
 - Similar to full map with better cost and power but more complex algorithms
- 4. Onload to Host CPU and DRAM
 - Custom Drivers, every OS and even HW is unique driver
 - Resource intensive on host
 - Very long recovery times after power failure

Design for Media Flexibility

- Support for many flash devices is critical
 - Component availability fluctuates greatly
- Every NAND is different
 - Makes software complex to design and qualify!
 - Page/Block size
 - Page/Block count
 - Spare Area
 - Planes
 - Commands
 - Interfaces
 - Reliability characteristics
 - Multi-LUN support
 - Performance/Response Times
 - Etc. etc. etc.


資料來源:集邦科技,2009年1月 Source: DRAMeXchange, Jan. 2009.

Design for Manufacturing Flexibility

- SSD vendors differentiate by optimizing for different markets
- Achieved through Manufacturing time customizations
 - Ideal settings vary across applications
- Firmware must be flexible to provide support

Putting it all together is what makes it great!

nory SSD Related Standards Bodies

- Flash standards, Form Factors, Rel. + End.

- Flash standards

- SATA Standards

SNIA - SSD Performance Testing

Contact Andy Tomlin - atomlin@SandForce.com

Contact Jeremy Werner - jwerner@SandForce.com

SandForce SSD Processors

World-class reliability, performance, & power efficiency for enterprise, client, and industrial SSD applications

■Visit us at **booth #407** to see our DuraClass[™] technology in action with the latest 30nm MLC flash technology

- MO297 Ultra compact high-density industrial standard SATA form factor with up to 30K read/write IOPS* per watt
- PCIe Industry leading IOPS* for read, write, and mixed workloads
- SAS 25K sustained write IOPS* through Emulex's high-performance SAS-SATA embedded storage bridge technology
- SATA Updates on SSDs, testing, and infrastructure equipment collaboration
- •Stop by to enter our **free drawing** for one of three Corsair Force 120GB SandForce Driven SSDs
- •See other SandForce Driven SSDs in our partners' booths as well

*Random 4K transfers

