

Enterprise SSDs with Unrivaled Performance A Case for PCle[®] SSDs

Kam Eshghi Sr. Director of Marketing Integrated Device Technology, Inc.

Santa Clara, CA August 2010

Enterprise Server & Storage Trends

- CPU performance growth outpacing storage performance growth
- Multi-core CPUs and virtualization are increasing randomness of disk I/Os
- Key metrics: \$\$/IOPS and IOPS/W
- OEMs will use SSDs for performance and HDDs for capacity
- Flash filling the price/performance gap between DRAM and HDD

#1 driver for Flash adoption in Enterprise is Performance

End User Applications

- Improve OLTP performance
 - Higher percentage of IO operations
- Accelerate real-time financial data processing
 - Every µsec matters \$\$
- Reduce 3D rendering time
 - Enable real time rendering for CAD/CAM
- Accelerate Database/Data mining performance
 - Faster data mining in customer relationship management applications

Business Critical Applications Limited by Storage Performance

Santa Clara, CA August 2010

New Flash-based layer for application-managed caching

PCIe SSDs' high performance and low latency is ideal for Cache Tier and high performance drive replacement

Santa Clara, CA August 2010

Server SSD Attach Points

PCIe SSDs have >5x the throughput of SAS/SATA SSDs

Santa Clara, CA August 2010

PCIe-based Enterprise SSD Market

- Enterprise-class SSDs expected to grow to over 5M units in 2013
- Mostly FC or SATA-based today, with SAS and PCIe expecting to dominate the enterprise SSD market by 2013
- 41% of enterprise SSDs expected to use PCIe host interface in 2013
- A standard driver and consistent feature set will expedite PCIe SSD adoption

PCIe Enterprise SSDs

Source: Gartner 2010

Santa Clara, CA August 2010

For Enterprise SSDs Saturating Host Interface

- Flash more efficient and higher performance
- Page size increasing from 512B to 8KB
- Channel performance increasing from 40MT/s to 133-200MT/s (DDR)
- 4 flash channels with 8 targets on each will saturate SATA 6G host interface

Performance bottleneck shifting to Host Interface

Santa Clara, CA August 2010

What is the right Host Interface?

4000 MBps

Interface Performance*

 PCIe improves overall system performance by reducing latency and increasing throughput
 CPU complex provides plenty of PCIe ports, simplifying

server integration

* All performance numbers assume zero protocol overhead

Santa Clara, CA August 2010

Why PCIe SSD? Performance.

Storage Type	Performance	
	Latency	Max. Throughput
HDD	2000µs	130 MBps
SATA 3G SSD	50µs + Protocol Controller	280 MBps
SATA 6G SSD	50µs + Protocol Controller	400 MBps
PCIe x8 G2 SSD	50µs	3000 MBps

PCIe SSDs offer lower latency and >5x the performance of SAS/SATA SSDs

Santa Clara, CA August 2010

Myth: PCle is an exotic storage interface (SATA history)

SUMMIT

Running host bus to disk is not a radical idea; it was done two decades ago!

Santa Clara, CA August 2010

Benefits of PCIe as an SSD Interconnect (Summary)

Higher performance

- >5x the throughput of SAS/SATA SSDs
- Lower latency
 - Closer to CPU

- Lower power
 - Eliminates SAS/SATA SerDes power
- Lower cost
 - Eliminates Storage HBA
- Less board real estate
 - More room for Flash devices

Some say... Any "SSD" needs to be drop-in disk replacement, using existing software infrastructure

We say... It's time to bypasses legacy HDD technology for a direct host connection \rightarrow get **blistering Performance at low Latency!**

Santa Clara, CA August 2010

PCIe SSD Implementation Options

How would you build a PCIe SSD card? Let's review a few different approaches...

- RAID-based using SATA/SAS Flash Controllers
- Native PCIe Flash Controller with Host Managed Flash
- Native PCIe Flash Controller on SSD

Option A – RAID-based PCIe SSD

Pro's

• Time to Market – All building blocks exist today

Con's

- Two-level architecture increases <u>latency</u> and reduces <u>performance</u>
- High device count results in higher <u>cost</u>, uses up more board <u>space</u>
- Higher power because of additional SerDes links and high device count

RAID-based PCIe SSD is readily available today, but not optimized for performance/power

Santa Clara, CA August 2010

Option B – **PCIe SSD with Host Managed Flash**

Pro's

 Requires simple Flash controller

Con's

- Consumes host CPU processing resources
- Consumes host memory
- Requires proprietary divers, adding software complexity and extending OEM qualification

Running flash management algorithms on host drains Host CPU/RAM resources

Santa Clara, CA August 2010

Preferred Option – Native PCIe Flash Controller on SSD

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Pro's

- Improves performance
- Reduces cost
- Reduces power
- Enables standard OS drivers
- Reduces host CPU/RAM utilization
- Frees up board real estate for Flash devices

Con's

Requires sophisticated Flash controller

Native PCIe Flash Controller improves performance, while reducing cost & complexity

Flash

Flash

Flash

Flash

Santa Clara, CA August 2010

() IDT.

Flash

Controller

PCle

PCIe SSD Software Challenge

What about the software?

- Currently there is no standard OS/driver infrastructure in place for PCIe SSDs
 - No standard host controller register interface
 - Each vendor has to provide drivers for every OS
 - OEMs have to validate each vendor's drivers
- AHCI makes PCIe SSD look like a SATA SSD, but need to extend with proprietary drivers to optimize performance
 - No standard drivers, validation costs, etc.

Solution: Proprietary drivers today, migrating to standard "Enterprise NVMHCI" in the future

Santa Clara, CA August 2010

What is Enterprise NVMHCI? Enterprise <u>Non-Volatile Memory Host</u> Controller Interface

- Standard host controller interface for Enterprise class PCIe SSDs
- A standard register programming interface for NVM
- Not tied to any specific NVM technology
- All NAND management abstracted out
- Optimized for both cache and SSD usage models
- Driven by Intel, Dell, Microsoft, IDT, and 50+ other companies

Enterprise NVMHCI Objectives

Addressing Enterprise PCIe SSD requirements

- Address Enterprise server scenarios
- SSD vendors focus on building great SSDs
- OS vendors deliver drivers for all PCIe SSDs
- Simplifies OEM qualification
- Features are implemented in a consistent fashion, reducing time to market for PCIe SSDs

Enterprise NVMHCI Architectural Goals

- Increase parallelism, eliminate performance bottlenecks seen in other interfaces
 - Support multiple deep command queues
 - Simplify command decoding and processing
- Provide an efficient & streamlined command set enabling very high IOPS
 - Do not carry forward HDD command set legacy
 - Commands optimized for NVM
- Provides Enterprise features
 - End-to-end data protection
 - Firmware update
 - Encryption
 - Comprehensive statistics
 - Health status reporting
 - Robust error reporting & handling

Santa Clara, CA August 2010

Enterprise NVMHCI Timeline

Timeline

- Aug 2010: 0.7 revision
- Oct 2010: 0.9 revision (erratum only after this point)
- Dec 2010: 1.0 release, published

To get involved in the specification definition, join the NVMHCI Workgroup

IDT Demonstrating Industry's First Enterprise NVMHCI Flash Controller prototype NOW!

Santa Clara, CA August 2010

Summary

- Need to increase storage I/O throughput and reduce latency for Enterprise applications
- PCIe SSDs deliver the best \$\$/IOPS and IOPS/W
- Software interface expected to migrate from today's proprietary drivers to standard Enterprise NVMHCI
- Enterprise NVMHCI fosters faster adoption for PCIe SSDs, with standard OS drivers and reduced OEM validation

