

Flash Secrets Revealed

Jim Fitzpatrick Smart Modular Technologies August 17, 2010 San Jose, CA

FET OFF

FET ON

- Charge on floating gate is trapped by the surrounding insulator.
- V_{TH} shifts to a higher voltage in proportion to the amount of charge trapped on the floating gate.

Drain

- Unselected cells receive a voltage that mimics a low voltage program.
- The relative size of the energy barrier that keeps electrons from populating the floating gate is lowered during reads.
- Program / Erase cycles damage the insulator, thus lowering the energy needed to transfer electrons to the FG.

PE Loop

- Apply N Program / Erase cycles (50% 1's, 50% 0's)
- Rd Disturb Loop
 - Write all pages once
 - Apply K Reads to pages 2-5
 - Read all pages except 2-5 once, then report error rate
- End Rd Dist Loop
- End PE Loop
- Results reported here are at room temperature.
- Data shown here is from a single chip
- PE rating is nominally 3000 cycles for this design.

BER vs Number of Read Disturbs

Smart Modular Technologies

Smart Modular Technologies

Block

← 14

 If some blocks have substantially more life than others, the healthy blocks can be used more frequently to extend the life of the flash beyond the minimum.

Block Life in PE Cycles

BER vs Block Number and Number of PE Cycles

PE Cycles 72000 Rd Disturbs 100000

BER sorted from Best to Worst

Rank Ordering at EOL vs Rank Ordering at Beginning of Life

Memory Distribution of Block Life (after 200k Reads)

Smart Modular Technologies

Avg BER vs PE Cycle & Number of Read Disturbs

Avg BER vs Number of Read Disturvs and PE Cycles

Increased slope after many PE cycles.

- Read disturbs behave as if each read of an adjacent page provides an opportunity for electrons to exceed the energy barrier needed to get to the floating gate.
- Increasing PE cycles causes the "activation energy" to increase and accelerate the effects of read disturbs.

Simple Model for Wear

- BER is exponential vs the number of read disturbs
- BER grows faster than exponential vs the number of PE cycles.

Block Life

- Predicting block life from BER early in life captures trends, but misses many exceptional blocks.
- Block performance is generally well correlated with adjacent block performance.