

Progress and Prospect for MRAM

Saied Tehrani Everspin Technologies, Inc.

Santa Clara, CA August 2010

Everspin Introduction

- Formed as Everspin in June 2008 Previously part of Freescale Semiconductor
- The leading developer and manufacturer of integrated magnetic products
 - Industry-first MRAM supplier since June 2006
- Current MRAM products
 - Parallel interface products ranging from 256k-16Mb
 - Infinite endurance, >20 year data retention, 35 ns read & write speed
 - Serial interface products ranging from 256kb-1Mb
 - 40 MHz SPI interface, No write delay, infinite endurance

Everspin MRAM Technology

Cross-sectional view

- Simple 1 transistor + 1 MTJ memory cell
- Data stored in magnetic polarization, not charge
- State of bit detected as change in resistance
- Always non-volatile
- Non-destructive read, unlimited endurance
- Leverage CMOS semiconductor ecosystem
- Everspin "Electron spin is forever"

Circuit

Memory Endurance vs. Cycle Time

MRAM bit switching

Toggle-MRAM in production

ST-MRAM in development

- Cross-point architecture
- Current along bit line and digit line to switch at intersection

- Current I_{DC} flows through MTJ and transistor
- Fixed magnet polarizes I_{DC}
- Spin-transfer torque programs free magnet
 - Conservation of angular momentum

Spin Torque MRAM

Use spin momentum from current to change direction of S, m.

Low Switching Current

Isw

- Demonstration of low write current with 60nm bits
- Energy barrier = 60kT

Large Separation of V_{sw} and V_{bd}

16kbit integrated CMOS arrays

• Excellent separation $\approx 20\sigma$, due in part to $\sigma_{sw} \approx \sigma_{bd} \approx 4\%$

Scaling ST-MRAM

- Today: Reduce J_c for reliability and smaller transistors
- Continued scaling: maintain energy barrier and manage resistance distributions

ST-MRAM bits scale favorably to available current from transistor

- Low Jc for reliability is the bigger issue
- Continued scaling
 requires innovative
 magnetic devices and
 materials
 - Enhanced energy barrier
 - Increased TMR

 $I_{\rm c}$ calculated for $J_{\rm c}\text{=}2MA/\text{cm}^2$

- MRAM is a highly reliable, high-performance, nonvolatile memory IC, with unlimited endurance
- MRAM has the unique characteristics of a working memory while providing non-volatility
- Current MRAM product densities range from 256kb-16Mb
- Higher density MRAM products in development will utilize Spin Torque switching and will maintain MRAM's unique characteristics