

# The Operation Algorithm for Improving the Reliability of TLC (Triple Level Cell) NAND Flash

YeonJoo Jeong, Sukkwang Park, Myoung Kwan Cho, Kun-Ok Ahn and Yohwan Koh Hynix Semiconductor Inc.





- Introduction
- Read Operation : Moving Read

Interference Cancellation Negative <u>WL Bias</u>

- Erase Operation
- : Alternative Erase and Verify Erase Pulse Optimization
- Program Operation : Data Randomization

Controllable Bias for Each WL De-trapping Trapped Charges



#### Introduction

#### Solution for Larger Density & Competitive Price





#### Introduction

- TLC : To achieve the larger capacity of NAND Flash
- TLC has more levels of V<sub>th</sub> distribution per cell than MLC
- The cell V<sub>th</sub> distribution should be tightly controlled
- Operation conditions should be optimized for reliability





## **Scaling Barriers in NAND Flash**

| Geometry                | Small Coupling Ratio, Small On Current |
|-------------------------|----------------------------------------|
| Narrow Operating Window | Interference, Disturbance, EW Stress   |
| Process Sensitivity     | Less Tolerance in Process Variation    |

#### [NAND Flash Structure]







### **Narrow V<sub>th</sub> Window**

- In MLC : [ PV3 (4V) PV1 (0.4V) ] / 3 Level → 1800mV / Level
- In TLC : [ PV7 (5V) PV1 (0.4V) ] / 6 Level → 760mV / Level

• Needs More tightly controlled  $V_{th}$  distribution





# V<sub>th</sub> Distributions in TLC

- Narrow V<sub>th</sub> window in TLC
- Needs Moving read, Interference cancellation, Data Randomization and Reduce degradation in EW Cycles



Flash Memory Summit 2010 Santa Clara, CA



#### **Dynamic Read**

- V<sub>th</sub> distribution changes after E/W or Retention
- To find the minimum fail bits, read level changes interactively : R7 → R7\* or R2 → R2\*





#### **Dynamic Read**

- Moving read algorithm motivated by changed V<sub>th</sub> distribution
- Getting the distribution of every bits, we can use it at the error correction





#### **Dynamic Read**

#### In Ideal Randomized state, each cell distribution has 2K cells



Changed read level can compensate the  $V_{th}$  shift

Flash Memory Summit 2010 Santa Clara, CA



#### **Interference Cancellation**

- Ist Read : Fail
- 2nd Read : Checking the status of adjacency Cell (1)
- 3rd Read : Checking the status of adjacency Cell (2)
- 4th Read : Change read level : 1st Read Level + Interference Value





### **Negative WL Scheme**

- The  $V_{th}$  distribution shifts to left side virtually with  $-\alpha V$
- The burden of high PV level can be relieved
- The PV margin can be enlarged





#### **Negative WL Scheme**

- Lowering PV1 Level → Maximizing Delta of PV7 between PV1
- Shifting PV1, PV7 → Lowering PGM Bias → Improving Disturbance

|         | Real Negative Scheme                                                          | Virtual Negative Scheme                                                             |
|---------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Merit - | Stabilized bias                                                               | No Adding Process / Mask                                                            |
|         | Simple Operation                                                              | -                                                                                   |
| Demerit | -                                                                             | Complicated X-DEC<br>Operation                                                      |
|         | Transferring Negative Bias in<br>Peri Circuit<br>→ Complicated Well Structure | Needing Time of Pre –<br>Discharging TPWell <del>-&gt;</del><br>Performance Degrade |



#### **Negative WL Scheme**

#### If you need to get minus α V in verify operation





# **Alternative Erase and Verify (AEV)**

- Even/Odd W/Ls are separately verified with different bias level to avoid additional erase pulse caused by erase slow bits
- Only erase failed W/Ls (even/odd) are erased with ISPE bias





## **Alternative Erase and Verify (AEV)**

The AEV method reduce the EW degradation than conventional ISPE method, because of delaying starting next erase pulse





# **Optimizing Erase Pulse Shape**

- TLC needs to reduce erase stress because PV7 is higher than PV3 of MLC
- Increasing the rising Slope
  - Reducing FN stress in Si / SiO<sub>2</sub> interface





## **Optimizing Erase Pulse Shape**

- Slow rising time relieve the reliability characteristics
  - (EW Cycle 1K + Retention 0.5Y)



Cell  $V_{th}$  (V)



 Soft erase can reduce erase stress, especially in PV 7, and also erase time can be reduced through optimization





#### **Data Randomization**

#### All the cell are evenly distributed to each programmed levels



Schematic diagram of randomization process

Flash Memory Summit 2010 Santa Clara, CA



#### **Data Randomization**

- Without Randomization
- Some levels are wider distribution than others
- Instabilities after retention or EW cycles





The large PV level gap between victim and neighboring cells should be avoided in order to minimize the interference

• Suggestion :  $12 \le PV$  of (1 + PV) of (2 + PV) of (3 + PV) of  $(4 \le 14)$ 



## Flash Rependently Controlled Bias for Each W/Ls

- Large numbers of W/Ls in a string
- The cell characteristics are widely varied with W/L position
- PV level and ISPP step should be controlled independently



The difference of PV1 distribution along the W/Ls

# Flash Each W/Ls

- The number of fail bits are different as the cell position
  - Different V<sub>pass</sub> in program bias should be used



Flash Memory Summit 2010 Santa Clara, CA

# FlashMemor

## Independently Controlled Bias for Each W/Ls

Adjusting level of PGM/Read bias to maximizing reliability and performance

|                                 | 1st WL       | Centered WL  | Near by Last WL    |
|---------------------------------|--------------|--------------|--------------------|
| ISPP Step                       | $\downarrow$ | $\uparrow$   | $\uparrow\uparrow$ |
| V <sub>pass</sub> in<br>program | 1            | -            | $\downarrow$       |
| PV1 level                       | 1            | $\downarrow$ | 1                  |



# **Detrapping the Trapped Charges**

#### Remove the trapped charge before program verification by low erase pulse





# **Detrapping in E/W cycles**

#### The stress condition : E/W cycling 500cyc + Retention bake 0.5 yr

..... Cycling without detrapping

Retention after cycling without detrapping

Retention after cycling with detrapping





### **Detrapping Mechanism**



Applying the low level bias in Well
 Removing shallow trapped charges in
 IPD trap Sites (1)
 Gap fill material (interface) (2)
 Interface between T<sub>ox</sub> and Si (3)



- TLC (3 bits per cell) needs to be more optimized condition than MLC in PGM /Read/ Erase for improving the reliability
- In read operation, dynamic read, interface cancellation and negative
  W/L schemes are proposed to overcome the V<sub>th</sub> distribution overlap
- In erase operation, Alternative Erase & Verify and erase pulse optimization are proposed to reduce the erase stress
- In program operation, data randomization, Independently controlled W/L bias and de-trapping schemes are proposed to improve the interference, different W/L characteristics and retention characteristics