

CMOS NVM Extended Reliability Performance

Flash Memory Summit August 2010

THE SEMICONDUCTOR INDUSTRY'S TRUSTED IP PARTNER

Outline

Introduction – What is CMOS NVM?
How do we guarantee Manufacturability?
Extended reliability results
Conclusions

Introduction : What is CMOS NVM?

 CMOS NVM: Embedded NVM that is built in a standard logic CMOS process (single poly) with no additional masks / processing steps

Introduction : AEON[®] Product Families

- Fully contained IP
- NVM array
- Analog blocks
 - Charge pump
 - Bias/oscillator
 - HV switch
 - Sense Amplifier
- Digital controller
- Test Modes

Manufacturability Validation

Characterization

- Process skew wafers
 - Vt and poly CD splits
 - Oxide splits
- Beyond spec temperature
- Beyond spec voltage
- Key parameters tested
 - Yield

- Program / Read times
- Current consumption
- Internal Analog blocks
- Retention
- Endurance
- Disturb

Characterization Example : Functionality Shmoo

- Shmoo plot validates IP functionality (Prog/Read) on all process split above and beyond operating window
- Highlight manufacturing margin and IP sensitivity to process/operating conditions
- Production test flow limits based on characterization results

Qualification – Many Standards

	ENDR CT	ENDR RT	ENDR HT	HTOL	Retention HT	Retention LT
AEC Q100 G AEC Q100- 005 C	3 x 77 Worst Case Condition			3 x 77	3 x 77	
JESD47F		3 x 38	3 x 39	3 x 77	3 x 39	3 x 38
TSMC 9000			3 x 77	3 x 100	3 x 77	
Virage Logic	3 x 100	3 x 77	3 x 77	3 x 100	3 x 77 + 3 x 38	3 x 77

- VIRL qualification approach is a superset of key standards with respect to NVM testing
 - Automotive : AEC Q100 RevG
 - Consumer / Industrial : JEDEC JESD47G
 - Foundry : e.g. TSMC IP9000

Automotive Qualification Plan (EEPROM)

Is passing qual sufficient to guarantee quality/reliability targets for the NVM IP?

Not always...

NVM Reliability Concerns

- Data retention (intrinsic)
 - Ability of a process to retain charge
- Endurance
 - Ability of high voltage devices to sustain stress
 - Gate oxide degradation (trap-up)
- Write disturb
 - Unselected rows cumulative stress
- Tail bits
 - Enhanced leakage caused by defects and / or cycling
- Conclusion : passing Qual is only a stepping stone to guarantee reliability for the most stringent applications (e.g. automotive)

Intrinsic Retention

- Inherent ability of each bit (floating gate) to retain charge
 - Highly accelerated by temperature
 - Follows the Arrhenius model with a process dependent activation energy
- Validation Methodology
 - Extract activation energy
 - Monitor cell current drift vs. time and bake temperature
 - Ea > 1eV is typical for FG NVM
 - De-rate extended bake test condition to use model

Intrinsic Retention vs. Gate Oxide

Annonit

Recent developments on Flash memory reliability D. lelmini et al

- Excellent intrinsic retention obtained with Tox ranging from ~50Å (65nm) to ~125Å (.25um 5V)
 - Extended 250C retention bake equivalent to >> 10 years @ 150C regardless of oxide thickness
- Theoretical paper by D. Ielmini suggest 43A is limit for Tox and 10 years of intrinsic retention

Endurance

- Endurance margin to spec evaluated by cycling to failure or 10x specification
 - Prog time, programming window monitored during experiment
- Results obtained on key nodes demonstrate 1M cycles capability across temperature with zero failure

Write Disturb

- Un-selected rows are being disturbed during programming
 - Main distribution charge loss
 - Tail bits (i.e. fast disturb bits)
- Centering Prog Inhibit voltage critical to maximize reliability performance
 - Straddle neutral point = best
- Using ECC can significantly improves write disturb immunity by correcting the tail bits

Tail Bit – Reliability vs. Architecture

- Tail bit = Floating Gate that looses charge faster than main distribution
- Retention failure \rightarrow a floating gate (bitcell) lost its charge and the information is lost
- Architectures can compensate for some tail bits
 - Error Correction Code (ECC)
 - Differential bit (redundancy)
 - Combination of the above
- Virage Logic differential bitcell is intrinsically reliable against defect / tail bits providing a measure of fault tolerance

Tail Bit – Reliability vs. Architecture (theory)

- Redundant non-volatile bitcells are inherently reliable
 - Fails if and only if all Floating Gates fail
 - If Floating Gate failure rate = f
 - Differential bitcell failure rate \approx (f)²
 - Quad bitcell failure rate \approx (f)⁴
- Error Correction Code
 - Further increases reliability
- Combining redundancy and ECC allows VIRL to design a reliable NVM with a high % of tail bits
 - Redundancy scheme and/or error correction depends on probability that a FG fails
 - Tolerates very high failure rate
 - Easy to demonstrate that minimum requirement is met (< 100k bits needed)
 - 0.1% FG failure rate → array still meets < 10 ppm reliability!

Architecture	Arbitrary FG Failure rate	PPM (2k bit)	Market	
SE	0.1%	~850,000	None	
SE + ECC	0.1%	~42,000	None	
Differential	0.1%	~2,000	Consumer	
Differential + ECC	0.1%	<0.05	Automotive	

Extended Retention Bake with 2.5V Oxide

- 65nm AEON EEPROM
 - 2.5V I/O Gate oxide (~ 50Å)
 - >12,000 hours of bake @ 150C
 - No intrinsic retention shift
 - Large number of tail bits leaking towards charge neutral (~12.5uA) over time
- Programming window (|i1-i0|) is key retention metric for differential bitcell
 - PW \approx 0uA \rightarrow failure
 - PW remains > 0uA
 - Zero differential bit failures
 - < 0.001% of differential bitcells have both floating gate leaking (easily handled with ECC)
- Excellent retention performance for 65nm AEON technology despite large number of tail bits

Retention Results : Does it Fit the Model?

- Digital read failures tallied as a function of the architecture (reads performed in single ended or differential mode and with or without ECC)
- Theoretical number of failing rows calculated based on
 - Total number of rows tested (48,604)
 - Floating Gate Failure rate after 12,000 hours of bake estimated from cell current data (2.4E-4)
- Excellent match between model projection and digital reads
 - Validates that FG failure rate is key metric
 - Validates inherent robustness of differential bitcell approach to handle tail bits

Retention Results : FG Failure rate vs. Process

<u>65nm (~50Å)</u>

65nm AEON EEPROM Retention Cell Current

<u>250nm (~125Å)</u>

Technology	Tox (Å)	Estimated FG Failure Rate (%)	SE (PPM)	SE + ECC (PPM)	Diff (PPM)	Diff + ECC (PPM)
65nm LP	~50	0.4	1,000,000	930,000	122,000	50
90nm LP	~70	0.001	79,000	18	< 1	~0
0.25um 5V	~125	<0.00003	< 2,400	<< 1	<< 1	~0

- 2.5V I/O oxide → Differential + ECC architecture = consumer / industrial reliability
- 3.3V I/O oxide \rightarrow Differential (with/without ECC) = automotive reliability
- 5V I/O oxide \rightarrow Single Ended + ECC or Differential = automotive reliability

Conclusions

- Highly reliable CMOS NVM IP is available on nodes ranging from 0.25um 5V down to 65nm
- Manufacturability validated by testing IP on process splits beyond operating window
- Quality demonstrated by exceeding qualification standards and performing a knowledge base qualification flow
- Extended Reliability studies on data retention, endurance and disturb guarantee highest quality level

