

Error Control Strategies for NVM: Extending Memory Lifetime Using Coding

Lara Dolecek Electrical Engineering, UCLA

- Problem:
 - o Cell erasures and memory wearout.
- Proposed approach:

 Data self-repair to minimize number of erasures based on algebraic techniques.
- Summary and outlook:
 - Overcome physical degradation by novel mathematical solutions.

Memory Lifetime and Write/Erase Operations

When only one cell needs to be erased, the whole block needs to be reset.

- For SLC ~ 10⁶ writes,
- For MLC ~ $10^4 10^5$ writes (serious)

Flash Memory Sum Figure TLC ~ $10^3 - 10^4$ writes (more serious). Santa Clara, CA

Memory Lifetime and Write/Erase Operations

Programming (write) error is very costly.

Wastes erase cycles.

Memory Lifetime and Write/Erase Operations

 Write is incremental step pulse programming a.k.a. "guess-and-verify".

Being cautious affects latency.

- Idea 1: Allow for sloppy writes.
 - o Improves latency.
 - Not wasting erase/write budget.
 - o Reliability?
- Idea 2: Figure out what was intended to be written based on other cells.
 - o Overshot values stay intact (for the time being).
 - o Redundancy ?

Allow writing overshoot, a.k.a. sloppy writes.

Key: unidirectional error correction scheme.

Varshamov-Tenengolts codes [1]:

$$\sum_{i=1}^{n} ix_i \equiv a \mod (n+1)$$

- o *n* is block size,
- $\circ x_i$ is value in cell *i*,
- o a is arbitrary integer.
- VT code corrects one unidirectional error.

A Generalized Scheme Based on Number Theory

Proposed scheme:

$$\sum_{i=1}^{n} i x_{i} \equiv a_{1} \mod p$$
$$\sum_{i=1}^{n} i^{2} x_{i} \equiv a_{2} \mod p$$
$$\dots$$

$$\sum_{i=1}^{n} i^{2k} x_i \equiv a_{2k} \mod p$$

Parameters:

- *k* is target error correction
- o *n* is block size
- $\circ x_i$ is value in cell *i*,
- o $a_1 \dots a_{2k}$ are arbitrary integers.

 \circ *p* is some prime, *p* > *n*

Guaranteed to correct k unidirectional errors.

A Generalized Scheme Based on Number Theory

- Encoding:
- 1. Compute congruency contribution from data.
- 2. Add values in anchors for overall congruency.
 - With careful indexing, redundancy is minimal.
 - Systematic construction.
- Example: target: ∑ i x_i = 0 mod p

index 12345678910 values 1111011001

A Generalized Scheme Based on Number Theory

- Decoding
 - 1. Test if congruency constraints are violated.
 - 2. Solve equations to figure out the correct values.
 - Computations can be efficiently implemented.
- Example: target: Σ i x_i = 0 mod 11

index 12345678910 values 1111011011

A Generalized Scheme Based on Number Theory

- Decoding
 - 1. Test if congruency constraints are violated.
 - 2. Solve equations to figure out the correct values.
 - Computations can be efficiently implemented.
- Example:
 computed: ∑ i x_i = 9 mod 11

index 12345678910 values **111101101**1

- Data self-repair can improve write latency and extend memory lifetime.
- Efficient methods are developed based on number-theoretic ideas.
 - Very low redundancy
 - Implementable algorithms
 For SLC/MLC/TLC
- Rich opportunity to develop new data correction algorithms and methodologies tailored for Flash.

- Thank you for your attention!
- For more information

dolecek@ee.ucla.edu http://www.ee.ucla.edu/~dolecek