
1

Eitan Yaakobi, Laura Grupp
Steven Swanson, Paul H. Siegel, and Jack K. Wolf

Flash Memory Summit, August 2010

University of California San Diego

Efficient Coding Schemes
for Flash Memories

Friday, August 27, 2010

Outline

 Flash Memory Structure
 Single Bit Representation in MLC Flash
 New ECC Scheme for MLC Flash
 WOM-Codes

2

Friday, August 27, 2010

SLC Vs. MLC Flash

 In SLC flash, each cell stores a single bit
 In MLC, each cell can store multiple bits

(typically 2 bits)

3

0

1

Low	 Voltage

01

10

Low	 Voltage

00

11
1	 Bit	 Per	 Cell
2	 States

2	 Bits	 Per	 Cell
4	 States

Trapped
Charge

Trapped
Charge

MSB/LSB

Friday, August 27, 2010

Flash Memory Structure

4

Friday, August 27, 2010

Flash Memory Structure

 A group of cells consist of a page

4

Friday, August 27, 2010

Flash Memory Structure

 A group of cells consist of a page
 A group of pages consist of a block

4

Friday, August 27, 2010

Flash Memory Structure

 A group of cells consist of a page
 A group of pages consist of a block

• In SLC flash, a typical block layout is as follows

4

Friday, August 27, 2010

Flash Memory Structure

 A group of cells consist of a page
 A group of pages consist of a block

• In SLC flash, a typical block layout is as follows

4

page 0 page 1
page 2 page 3
page 4 page 5

.

.

.

.

.

.
page 62 page 63

Friday, August 27, 2010

Flash Memory Structure

5

Friday, August 27, 2010

Flash Memory Structure

 In MLC flash the two bits within a cell DO NOT belong
to the same page – MSB page and LSB page

5

Friday, August 27, 2010

Flash Memory Structure

 In MLC flash the two bits within a cell DO NOT belong
to the same page – MSB page and LSB page

5

01

10

00

11

MSB/LSB

Friday, August 27, 2010

Flash Memory Structure

 In MLC flash the two bits within a cell DO NOT belong
to the same page – MSB page and LSB page

 Given a group of cells, all the MSB’s consist of one
page and all the LSB’s consist of another page

5

01

10

00

11

MSB/LSB

Friday, August 27, 2010

Flash Memory Structure

 In MLC flash the two bits within a cell DO NOT belong
to the same page – MSB page and LSB page

 Given a group of cells, all the MSB’s consist of one
page and all the LSB’s consist of another page

5

Row
index

MSB of first
214 cells

LSB of first
214 cells

MSB of last
214 cells

LSB of last
214 cells

1 page 0 page 4 page 1 page 5
2 page 2 page 8 page 3 page 9
3 page 6 page 12 page 7 page 13
4 page 10 page 16 page 11 page 17

⋮ ⋮ ⋮ ⋮ ⋮31 page 118 page 124 page 119 page 125
32 page 122 page 126 page 123 page 127

01

10

00

11

MSB/LSB

Friday, August 27, 2010

6

Experiment Description

Friday, August 27, 2010

6

Experiment Description

 We checked several flash memory MLC blocks

Friday, August 27, 2010

6

Experiment Description

 We checked several flash memory MLC blocks
 For each block the following steps are repeated

Friday, August 27, 2010

6

Experiment Description

 We checked several flash memory MLC blocks
 For each block the following steps are repeated

• The block is erased

Friday, August 27, 2010

6

Experiment Description

 We checked several flash memory MLC blocks
 For each block the following steps are repeated

• The block is erased
• A pseudo-random data is written to the block

Friday, August 27, 2010

6

Experiment Description

 We checked several flash memory MLC blocks
 For each block the following steps are repeated

• The block is erased
• A pseudo-random data is written to the block
• The data is read and compared to find errors

Friday, August 27, 2010

6

Experiment Description

 We checked several flash memory MLC blocks
 For each block the following steps are repeated

• The block is erased
• A pseudo-random data is written to the block
• The data is read and compared to find errors

 Remarks:

Friday, August 27, 2010

6

Experiment Description

 We checked several flash memory MLC blocks
 For each block the following steps are repeated

• The block is erased
• A pseudo-random data is written to the block
• The data is read and compared to find errors

 Remarks:
• We measured many more iterations than the manufacturer’s

guaranteed number of erasures

Friday, August 27, 2010

6

Experiment Description

 We checked several flash memory MLC blocks
 For each block the following steps are repeated

• The block is erased
• A pseudo-random data is written to the block
• The data is read and compared to find errors

 Remarks:
• We measured many more iterations than the manufacturer’s

guaranteed number of erasures
• The experiment was done in a lab conditions and related factors

such as temperature change, intervals between erasures or
multiple readings before erasures were not considered

Friday, August 27, 2010

Single Bit Representation in MLC Flash

7

Friday, August 27, 2010

Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?

7

Friday, August 27, 2010

Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?
 There are several ways:

7

Friday, August 27, 2010

Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?
 There are several ways:

7

01

10

00

11

MSB/LSB

Friday, August 27, 2010

Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?
 There are several ways:

• Program only the MSB pages

7

01

10

00

11

MSB/LSB

Friday, August 27, 2010

Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?
 There are several ways:

• Program only the MSB pages

7

MSB/LSB

01

10

00

11

Friday, August 27, 2010

Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?
 There are several ways:

• Program only the MSB pages
• Program only the LSB pages

7

MSB/LSB

01

10

00

11

Friday, August 27, 2010

Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?
 There are several ways:

• Program only the MSB pages
• Program only the LSB pages

7

MSB/LSB

01

10

00

11

Friday, August 27, 2010

Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?
 There are several ways:

• Program only the MSB pages
• Program only the LSB pages
• Program the LSB and MSB pages with the same values

(cells can be in state 11 or 00)

7

MSB/LSB

01

10

00

11

Friday, August 27, 2010

Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?
 There are several ways:

• Program only the MSB pages
• Program only the LSB pages
• Program the LSB and MSB pages with the same values

(cells can be in state 11 or 00)
• Program the data in the MSB pages, and program all LSB

pages to all-1 bit values (cells can be in state 00 or 01)

7

MSB/LSB

01

10

00

11

Friday, August 27, 2010

Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?
 There are several ways:

• Program only the MSB pages
• Program only the LSB pages
• Program the LSB and MSB pages with the same values

(cells can be in state 11 or 00)
• Program the data in the MSB pages, and program all LSB

pages to all-1 bit values (cells can be in state 00 or 01)

7

MSB/LSB

01

10

00

11

Friday, August 27, 2010

Single Bit Representation in MLC Flash

8

Friday, August 27, 2010

Single Bit Representation in MLC Flash

 What happens when the chip is first used as an MLC
and then switched to be used as an SLC?

 We ran the following experiments:
• Use the chip for 50,000 iterations as an MLC and 150,000

iterations as an SLC
• Use the chip for 100,000 iterations as an MLC and 100,000

iterations as an SLC
• Use the chip for 150,000 iterations as an MLC and 50,000

iterations as an SLC

9

Friday, August 27, 2010

Single Bit Representation in MLC Flash

10

Friday, August 27, 2010

Single Bit Representation in MLC Flash

11

Friday, August 27, 2010

ECC scheme for MLC flash

12

Friday, August 27, 2010

ECC scheme for MLC flash

 A common ECC in flash today is a BCH code

12

Friday, August 27, 2010

ECC scheme for MLC flash

 A common ECC in flash today is a BCH code
 Errors are corrected in each page independently

12

Friday, August 27, 2010

ECC scheme for MLC flash

 A common ECC in flash today is a BCH code
 Errors are corrected in each page independently
 In particular, in a pair of SLC and MLC pages sharing the

same group of cells, errors are still corrected
independently

12

Friday, August 27, 2010

ECC scheme for MLC flash

 A common ECC in flash today is a BCH code
 Errors are corrected in each page independently
 In particular, in a pair of SLC and MLC pages sharing the

same group of cells, errors are still corrected
independently

 Our goal: to correct errors in a pair of pages together

12

Friday, August 27, 2010

ECC scheme for MLC flash

 A common ECC in flash today is a BCH code
 Errors are corrected in each page independently
 In particular, in a pair of SLC and MLC pages sharing the

same group of cells, errors are still corrected
independently

 Our goal: to correct errors in a pair of pages together
 If a cell is in error, its level will typically increase by one

level

12

Friday, August 27, 2010

ECC scheme for MLC flash

13

Friday, August 27, 2010

ECC scheme for MLC flash

13

01

10

00

11

Friday, August 27, 2010

ECC scheme for MLC flash

13

01

10

00

11

Dominant
Errors

Friday, August 27, 2010

ECC scheme for MLC flash

13

01

10

00

11

Dominant
Errors

Friday, August 27, 2010

ECC scheme for MLC flash

13

01

10

00

11

Dominant
Errors

Friday, August 27, 2010

ECC scheme for MLC flash

14

s2

Friday, August 27, 2010

ECC scheme for MLC flash

 How to correct errors in a pair of pages together?

14

s2

Friday, August 27, 2010

ECC scheme for MLC flash

 How to correct errors in a pair of pages together?
• First, one level errors are corrected and then the other errors

14

s2

Friday, August 27, 2010

ECC scheme for MLC flash

 How to correct errors in a pair of pages together?
• First, one level errors are corrected and then the other errors

 Code construction:

14

s2

Friday, August 27, 2010

ECC scheme for MLC flash

 How to correct errors in a pair of pages together?
• First, one level errors are corrected and then the other errors

 Code construction:
• C1 is a t1-error-correcting BCH code

C2 is a t2-error-correcting BCH code, where t2 > t1

14

s2

Friday, August 27, 2010

ECC scheme for MLC flash

 How to correct errors in a pair of pages together?
• First, one level errors are corrected and then the other errors

 Code construction:
• C1 is a t1-error-correcting BCH code

C2 is a t2-error-correcting BCH code, where t2 > t1

• The codes are “compatible” –
For the same information word, the r1 redundancy bits
generated by the encoder of C1 are identical to the first r1
redundancy bits generated by the encoder of C2

14

s2

Friday, August 27, 2010

ECC scheme for MLC flash

 How to correct errors in a pair of pages together?
• First, one level errors are corrected and then the other errors

 Code construction:
• C1 is a t1-error-correcting BCH code

C2 is a t2-error-correcting BCH code, where t2 > t1

• The codes are “compatible” –
For the same information word, the r1 redundancy bits
generated by the encoder of C1 are identical to the first r1
redundancy bits generated by the encoder of C2

14

Information word s2

Friday, August 27, 2010

ECC scheme for MLC flash

 How to correct errors in a pair of pages together?
• First, one level errors are corrected and then the other errors

 Code construction:
• C1 is a t1-error-correcting BCH code

C2 is a t2-error-correcting BCH code, where t2 > t1

• The codes are “compatible” –
For the same information word, the r1 redundancy bits
generated by the encoder of C1 are identical to the first r1
redundancy bits generated by the encoder of C2

14

Information word

r1 bits

s1

s2

C1 Encoder

Friday, August 27, 2010

ECC scheme for MLC flash

 How to correct errors in a pair of pages together?
• First, one level errors are corrected and then the other errors

 Code construction:
• C1 is a t1-error-correcting BCH code

C2 is a t2-error-correcting BCH code, where t2 > t1

• The codes are “compatible” –
For the same information word, the r1 redundancy bits
generated by the encoder of C1 are identical to the first r1
redundancy bits generated by the encoder of C2

14

Information word

r1 bits

s1

r2 bits
s2

C1 Encoder

C2 Encoder

Friday, August 27, 2010

ECC scheme for MLC flash

15

Friday, August 27, 2010

ECC scheme for MLC flash
 Code construction:

15

Friday, August 27, 2010

ECC scheme for MLC flash
 Code construction:

15

pMSB = (a0,…,an-1)

pLSB = (b0,…,bn-1)

Friday, August 27, 2010

ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code,
where t2 > t1 , and the codes are compatible

15

pMSB = (a0,…,an-1)

pLSB = (b0,…,bn-1)

Friday, August 27, 2010

ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code,
where t2 > t1 , and the codes are compatible

15

pMSB = (a0,…,an-1)

C1 Encoder

pLSB = (b0,…,bn-1)

Friday, August 27, 2010

ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code,
where t2 > t1 , and the codes are compatible

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

pLSB = (b0,…,bn-1)

Friday, August 27, 2010

ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code,
where t2 > t1 , and the codes are compatible

 Encoding:

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

pLSB = (b0,…,bn-1)

Friday, August 27, 2010

ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code,
where t2 > t1 , and the codes are compatible

 Encoding:
• pMSB = (a0,…,an-1) and pLSB = (b0,…,bn-1) share the same group of cells.

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

pLSB = (b0,…,bn-1)

Friday, August 27, 2010

ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code,
where t2 > t1 , and the codes are compatible

 Encoding:
• pMSB = (a0,…,an-1) and pLSB = (b0,…,bn-1) share the same group of cells.

• Calculate s1, the r1 redundancy bits of C1 corresponding to pMSB

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

pLSB = (b0,…,bn-1)

Friday, August 27, 2010

ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code,
where t2 > t1 , and the codes are compatible

 Encoding:
• pMSB = (a0,…,an-1) and pLSB = (b0,…,bn-1) share the same group of cells.

• Calculate s1, the r1 redundancy bits of C1 corresponding to pMSB

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code,
where t2 > t1 , and the codes are compatible

 Encoding:
• pMSB = (a0,…,an-1) and pLSB = (b0,…,bn-1) share the same group of cells.

• Calculate s1, the r1 redundancy bits of C1 corresponding to pMSB

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

C2 Encoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code,
where t2 > t1 , and the codes are compatible

 Encoding:
• pMSB = (a0,…,an-1) and pLSB = (b0,…,bn-1) share the same group of cells.

• Calculate s1, the r1 redundancy bits of C1 corresponding to pMSB

15

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Encoder

C2 Encoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010

ECC scheme for MLC flash

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB
• Change the state of erroneous cells as follows:

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB
• Change the state of erroneous cells as follows:

– Level 11 is changed to level 10 and vice versa

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB
• Change the state of erroneous cells as follows:

– Level 11 is changed to level 10 and vice versa

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB
• Change the state of erroneous cells as follows:

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB
• Change the state of erroneous cells as follows:

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB
• Change the state of erroneous cells as follows:

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB
• Change the state of erroneous cells as follows:

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

• Using the r1 bits of s1, find up to t1 errors in pMSB

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB
• Change the state of erroneous cells as follows:

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

• Using the r1 bits of s1, find up to t1 errors in pMSB

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB
• Change the state of erroneous cells as follows:

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

• Using the r1 bits of s1, find up to t1 errors in pMSB

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010

ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB
• Change the state of erroneous cells as follows:

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

• Using the r1 bits of s1, find up to t1 errors in pMSB

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010

17

Friday, August 27, 2010

18

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

1st
write

2nd
write

data

cells

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

1st
write

2nd
write

data 01

cells 100

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

1st
write

2nd
write

data 01 11

cells 100 110

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

1st
write

2nd
write

data 01 11

cells 100 110

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

1st
write

2nd
write

data 01 11

cells 100 110

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…

00.11.01.10.11 … 10

WOM
ENCODER

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…

00.11.01.10.11 … 10

WOM
ENCODER

000.001.100.010.001 … 010
Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11

100.010.000.010.001 … 001
Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11

100.010.000.010.001 … 001

100.010.000.010.001 … 001

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11

100.010.000.010.001 … 001

100.010.000.010.001 … 001
100.100.000.001.010 … 000

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11

100.010.000.010.001 … 001

100.010.000.010.001 … 001
100.100.000.001.010 … 000

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11

100.010.000.010.001 … 001

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D
Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D
Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D
Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D
Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D

01.11.10.00.01 … 00

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D

01.11.10.00.01 … 00

011.001.101.111.011 … 111
Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

01.11.10.00.01 … 00

011.001.101.111.011 … 111

011.001.101.111.011 … 111

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

01.11.10.00.01 … 00

011.001.101.111.011 … 111

011.001.101.111.011 … 111

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101
Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER
000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101
101.100.101.101.110 … 000

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER
000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101
101.100.101.101.110 … 000

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101
101.100.101.101.110 … 000

000.110.111.111.110 … 010

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM

ENCODER

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101
101.100.101.101.110 … 000

000.110.111.111.110 … 010
111.110.100.101.101 … 110

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…

011.001.101.111.011 … 111
111.110.000.011.001 … 101
101.100.101.101.110 … 000

000.110.111.111.110 … 010
111.110.100.101.101 … 110

Friday, August 27, 2010

19

Write Once Memory (WOM)
Codes for SLC

 A scheme for storing two bits twice using only
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…

011.001.101.111.011 … 111
111.110.000.011.001 … 101
101.100.101.101.110 … 000

000.110.111.111.110 … 010
111.110.100.101.101 … 110

Advantages:
• The number of bits written per cell is 4/3
• Possible to write twice before a physical
erasure

Friday, August 27, 2010

20

BER for the First and Second Writes

Friday, August 27, 2010

21

WOM-Codes with two writes

Friday, August 27, 2010

21

WOM-Codes with two writes

 Assume there are n cells and two writes, t =2

Friday, August 27, 2010

21

WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
• First write: k1 bits, R1 = k1/n, second write: k2 bits, R2 = k2/n

Friday, August 27, 2010

21

WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
• First write: k1 bits, R1 = k1/n, second write: k2 bits, R2 = k2/n
• Capacity region (Heegard 1986, Fu and Han Vinck 1999)
 C = { (R1, R2) | $p ∊ [0, 0.5], R1 ≤ h(p), R2 ≤ 1 - p }

Friday, August 27, 2010

21

WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
• First write: k1 bits, R1 = k1/n, second write: k2 bits, R2 = k2/n
• Capacity region (Heegard 1986, Fu and Han Vinck 1999)
 C = { (R1, R2) | $p ∊ [0, 0.5], R1 ≤ h(p), R2 ≤ 1 - p }
 The WOM-rate R = R1+ R2 ≤ log2(3) » 1.58, achieved for p = 1/3

Friday, August 27, 2010

21

WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
• First write: k1 bits, R1 = k1/n, second write: k2 bits, R2 = k2/n
• Capacity region (Heegard 1986, Fu and Han Vinck 1999)
 C = { (R1, R2) | $p ∊ [0, 0.5], R1 ≤ h(p), R2 ≤ 1 - p }
 The WOM-rate R = R1+ R2 ≤ log2(3) » 1.58, achieved for p = 1/3

 Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

Friday, August 27, 2010

21

WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
• First write: k1 bits, R1 = k1/n, second write: k2 bits, R2 = k2/n
• Capacity region (Heegard 1986, Fu and Han Vinck 1999)
 C = { (R1, R2) | $p ∊ [0, 0.5], R1 ≤ h(p), R2 ≤ 1 - p }
 The WOM-rate R = R1+ R2 ≤ log2(3) » 1.58, achieved for p = 1/3

 Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

 We construct WOM-codes from any linear code:

Friday, August 27, 2010

21

WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
• First write: k1 bits, R1 = k1/n, second write: k2 bits, R2 = k2/n
• Capacity region (Heegard 1986, Fu and Han Vinck 1999)
 C = { (R1, R2) | $p ∊ [0, 0.5], R1 ≤ h(p), R2 ≤ 1 - p }
 The WOM-rate R = R1+ R2 ≤ log2(3) » 1.58, achieved for p = 1/3

 Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

 We construct WOM-codes from any linear code:
• The [23,12,7] Golay code: (0.9458, 0.5217) R = 1.4632

Friday, August 27, 2010

21

WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
• First write: k1 bits, R1 = k1/n, second write: k2 bits, R2 = k2/n
• Capacity region (Heegard 1986, Fu and Han Vinck 1999)
 C = { (R1, R2) | $p ∊ [0, 0.5], R1 ≤ h(p), R2 ≤ 1 - p }
 The WOM-rate R = R1+ R2 ≤ log2(3) » 1.58, achieved for p = 1/3

 Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

 We construct WOM-codes from any linear code:
• The [23,12,7] Golay code: (0.9458, 0.5217) R = 1.4632
• The [16,11,4] extended Hamming code (0.769, 0.6875), R = 1.456

and for the same rate we get (0.6875, 0.6875), R = 1.375

Friday, August 27, 2010

21

WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
• First write: k1 bits, R1 = k1/n, second write: k2 bits, R2 = k2/n
• Capacity region (Heegard 1986, Fu and Han Vinck 1999)
 C = { (R1, R2) | $p ∊ [0, 0.5], R1 ≤ h(p), R2 ≤ 1 - p }
 The WOM-rate R = R1+ R2 ≤ log2(3) » 1.58, achieved for p = 1/3

 Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

 We construct WOM-codes from any linear code:
• The [23,12,7] Golay code: (0.9458, 0.5217) R = 1.4632
• The [16,11,4] extended Hamming code (0.769, 0.6875), R = 1.456

and for the same rate we get (0.6875, 0.6875), R = 1.375
• By computer search we found rate (0.7273, 0.7273), R = 1.4546

Friday, August 27, 2010

22

Friday, August 27, 2010

23

Summary

Friday, August 27, 2010

23

Summary

 Single Bit Representation in MLC Flash

Friday, August 27, 2010

23

Summary

 Single Bit Representation in MLC Flash
 New ECC Scheme for MLC Flash

Friday, August 27, 2010

23

Summary

 Single Bit Representation in MLC Flash
 New ECC Scheme for MLC Flash
 WOM-Codes

Friday, August 27, 2010

23

Summary

 Single Bit Representation in MLC Flash
 New ECC Scheme for MLC Flash
 WOM-Codes
 More analysis of codes and error behavior -

	 	 COME TO BOOTH #510!

Friday, August 27, 2010

