Eitan Yaakobi, Laura Grupp
Steven Swanson, Paul H. Siegel, and Jack K. Wolf

UCSD
University of California San Diego

Flash Memory Summit, August 2010

Friday, August 27, 2010

sSuMMIT

= New cheme for VvV as
= \WOM-Codes

/
> 4 » CMRR

avrer bw Wagrave bac recdeg Reseen N

Friday, August 27, 2010

MSB/LSB

01
0
00
== Trapped . Trapped
Charge Charge 10
1 Bit Per Cell 1 2 Bits Per Cell
2 States 4 States 1
/ Low Voltage Low Voltage

<> 4% CMRR
/- Conmer bow Wogrevs: fax nrdng Sevoon

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

S/
(%!;EED

/

01

00

10

11

Friday, August 27, 2010

MSB of first | LSB of first | MSB of last | LSB of last
index 214 cells 214 cells 214 cells 214 cells
1 page 0 page 4 page 1 page 5
2 page 2 page 8 page 3 page 9
3 page 6 page 12 page 7 page 13
4 page 10 page 16 page 11 page 17

page 118

page 124

page 119

page 125

32

page 122

page 126

page 123

page 127

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

/
> ¥ » CMRR

Carre bw Wagrere ha redeg Reveen N

Friday, August 27, 2010

sSuMMIT

= Remarks:

/
> § » CMRR

avrer bw Wagrave bac recdeg Reseen N

Friday, August 27, 2010

= Remarks:
 We measured many more iterations than the manufacturer’s
guaranteed number of erasures

/
© 42 CVRR

Friday, August 27, 2010

 The data is read and compared to find errors
= Remarks:

« We measured many more iterations than the manufacturer’s
guaranteed number of erasures

« The experiment was done in a lab conditions and related factors
such as temperature change, intervals between erasures or
multiple readings before erasures were not considered

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

01

00

10

11

Friday, August 27, 2010

Friday, August 27, 2010

/

01

00

10

11

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

e Program the LSB and MSB pages with the same values

(cells can be in state 11 or 00)

Friday, August 27, 2010

sSuMMIT

WA CA \.J

 Program the LSB and MSB pages with the same values
(cells can be in state 11 or 00) 11

 Program the data in the MSB pages, and program all LSB
pages to all-1 bit values (cells can be in state 00 or 01)

/
<§;;E!ﬁ> 7 !"(:JVQF‘F‘

/ Cannae bow Wogravs: Bac vrdng Revoon

Friday, August 27, 2010

sSuMMIT

WA CA \.J

 Program the LSB and MSB pages with the same values
(cells can be in state 11 or 00) 11

 Program the data in the MSB pages, and program all LSB
pages to all-1 bit values (cells can be in state 00 or 01)

/
<§;;E!ﬁ> 7 !"(:JVQF‘F‘

/ Cannae bow Wogravs: Bac vrdng Revoon

Friday, August 27, 2010

Single Bit Storage in MLC Flash

I
-Normal run

Only MSB

Only LSB

MSB and LSB the same

LSB one

e & T
Iteration Number

Friday, August 27, 2010

Use the chip for 50,000 iterations as an MLC and 150,000
iterations as an SLC

o Use the chip for 100,000 iterations as an MLC and 100,000
iterations as an SLC

» Use the chip for 150,000 iterations as an MLC and 50,000
iterations as an SLC

J/
i)
€%
 /
Friday, August 27, 2010

Storing Two and Then One Blt in MLC

— MLC for 5. 104 Iterations

MLC for 10-104 Iterations

MLC for 15-10% Iterations

1
Iteration Number

Friday, August 27, 2010

i 0Stormg Two and Then One Bit in MLC

1— MLC for 5-10* |terat|ons

MLC for 10-104 Iterations

MLC for 15'104 |terati0ns ,, l_..

1- i » st # Wyt "*i}».\.‘ i
f - i | { 'It .
St J “ Y \ g 1 l;l'!:,r'?.

f) (
0. 5:-‘,%'&'»*”&' #f :J"« 'M‘a aﬂh 4'"

_" “n v J

1.5 1.6 | 1 7 118
Iteration Number

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

sSuMMIT

|ndependenﬂy

> M » CMRR

/‘ Carre bw Wagrere ha redeg Reveen N

Friday, August 27, 2010

: |’ ‘)“ “\- .

sSuMMIT

amne aroup O S
iIndependently
= Our goal: to correct errors in a pair of pages together

/
© N 5 CVRR

Friday, August 27, 2010

same group of cells, errors are still correctec
iIndependently

= Our goal: to correct errors in a pair of pages together

= |f acellisin error, its level will typically increase by one
level

Friday, August 27, 2010

Error Distribu_t__iqn?i(_\. MLC Flash

1800 oo T
O] [o

1400). .o-eem Y

Number,,, | .-
of Errors,,,, | .. |
000t ocesemnet
600, ..o
400-.. .

20

X104: :

Friday, August 27, 2010

Error Distribu_t__iqn?i(_\. MLC Flash

1800 oo T

VI R

1400). .o-eem Y

Of EITOIS g |é=""" |

800 ..om-""

600, ..o

P PRI

20

X104: :

Friday, August 27, 2010

Error Dlstrlbutlon in MLC Flash Dominant
Errors

01

1800 o ,,.-e-"""F

of Eftorsas |-+ N e T

T R et

600"}

400-.. Pt

2000

Friday, August 27, 2010

Error Dlstrlbutlon in MLC Flash Dominant
Errors

01

1800 o ,,.-e-"""F

Tt e I S U R W e S S

T R et

600"}

400-.. Pt

2000

Friday, August 27, 2010

Error Dlstrlbutlon in MLC Flash Dominant
Errors

01

1800 o ,,.-e-"""F

S I R S B i I I o e

T R et

600"}

400-.. Pt

2000

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

C, is a t,-error-correcting BCH code, where 7, > 1,

Friday, August 27, 2010

C, is a t,-error-correcting BCH code, where 7, > 1,
 The codes are “compatible” —
For the same information word, the r, redundancy bits
generated by the encoder of C, are identical to the first r,
redundancy bits generated by the encoder of C,

J/
i)
€%
 /
Friday, August 27, 2010

: |’ ‘)“ “\- .

sSuMMIT

C, is a t,-error-correcting BCH code, where 7, > 1,

 The codes are “compatible” —
For the same information word, the r, redundancy bits

generated by the encoder of C, are identical to the first r,
redundancy bits generated by the encoder of C,

Y

Information word S
2

/
f%!;EQED 14 !l' CMRR

Carre bw Wagrere ha redeg Reveen N

Friday, August 27, 2010

: : ‘)“ “\- .

sSuMMIT

C, is a t,-error-correcting BCH code, where 7, > 1,

 The codes are “compatible” —
For the same information word, the r, redundancy bits

generated by the encoder of C, are identical to the first r,

redundancy bits generated by the enco
/,I C, Encoder ' .
r, bits

Y

Information word

S

L o » CMRR

/”’ e b Wagraere b g hevres N

Friday, August 27, 2010

- (), is at,-error-correcting BCH code
C, is a 1,-error-correcting BCH code, where 7, > 7,

 The codes are “compatible” —
For the same information word, the r, redundancy bits

generated by the encoder of C, are identical to the first r,

redundancy bits generated by the enco
/,I C, Encoder ' .

Y

Information word

C, Encoder

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Pusg = (@gs--a,,1)

Pisg = (bgs--,b,.1)

Friday, August 27, 2010

Pusg = (@gs--a,,1)

Pisg = (bgs--,b,.1)

Friday, August 27, 2010

C, Encoder

Pusg = (@gs--a,,1)

Pisg = (bgs--,b,.1)

Friday, August 27, 2010

C, Encoder
S1

pMSB — (a09' . '9an_1) rl b'its

Pisg = (bgs--,b,.1)

Friday, August 27, 2010

C, Encoder
S1

pMSB — (a09' . '9an_1) rl b'its

Pisg = (bgs--,b,.1)

Friday, August 27, 2010

C, Encoder

$1

pMSB — (a09' . '9an_1) rl b'its

Pisg = (bgs--,b,.1)

/
= 8 » CMRR

Camrar bow Wograve Bac rodeg Reves~

Friday, August 27, 2010

* Pmss =~ Qgps---,a, 1) ANA Py g = (Dg,. .50, are the same group of ce

« Calculate s,, the r, redundancy bits of ', corresponding to p, .,

C, Encoder
$1
Pwss = (dgs--5a,,1) r Bits
Prsg = (bg,...,b, 1)
J/
C%!;E>ﬂ> 15 !”(:JVGF‘F‘

/ Carre bw Wagrere ha redeg Reveen N

Friday, August 27, 2010

o Pyep = (@g,..a,)and p, o, = (b,,....b,) share the same group of cells.
« Calculate s,, the r, redundancy bits of ', corresponding to p ;s

C, Encoder
$1
+ Pwmss = (@g,---5a,,.1) r Bits
PisB — (b09' . ”bn-l)
J/
< o T
9> Pmsp™ PisB M 2 CMRR

/ Carre bw Wagrere ha redeg Reveen N

Friday, August 27, 2010

o Pusp— (@g,a,)and p, o = (b.....b,) share the same group of cells.
« Calculate s,, the r, redundancy bits of ', corresponding to p ;s

C, Encoder
S1

+ Pmss — (aOﬂ' - '9an_1) r, b'its

Pisg = (bg,.-..b, 1)

Pmss™ PLsB | C, Encoder I

Friday, August 27, 2010

o Pusp— (@g,a,)and p, o = (b.....b,) share the same group of cells.
« Calculate s,, the r, redundancy bits of ', corresponding to p ;s

C, Encoder
51

+ Pyss = (4gs--50,.1) r bits S
x 2

[

Prsg = (bgs--50,,.1) r, bits
/
c.:]:f_}j_:) Pmss™ PLsB C, Encoder

Friday, August 27, 2010

+ Pusg = (g, -5a,,)

Prsg = (bg,--5D,..1)

Puvss™ PLsB

Friday, August 27, 2010

§1

Pusg = (@gs--5,.1) r, bits

S,

Prsg = (Db, 1) Fy

i C, Decoder I
Pwmss™ PLsB

Friday, August 27, 2010

§1

Pusg = (@gs--5,.1) r, bits

Prsg = (bg,--5D,..1)

C, Decoder

Friday, August 27, 2010

MSB/LSB

S 01
+ Pumss = (@gs---5a,,1) r, bits 00
S7
10
Piss = (bgs---50,,.1) r, Qits
11

C, Decoder

J/
i)
€%
 /
Friday, August 27, 2010

MSB/LSB

S 01

+ Pumss = (4g5--,a,,.1) r, bits . 00
2

10

Piss = (bgs---50,,.1) r, Qits

N
L/

11

C, Decoder

J/
s
 /
Friday, August 27, 2010

§1

Pusg = (@gs--5,.1) r, bits

Prsg = (bg,--5D,..1)

C, Decoder

Friday, August 27, 2010

§1

Pusg = (@gs--5,.1) r, bits

Prsg = (bg,--5D,..1)

C, Decoder

Friday, August 27, 2010

§1

Pusg = (g, -5a,,) r, bits

Prsg = (bg,--5D,..1)

C, Decoder

Friday, August 27, 2010

C, Decoder
1

Pusg = (g, -5a,,) r, bits

Prsg = (bg,--5D,..1)

C, Decoder

Friday, August 27, 2010

C, Decoder
1

Pusg = (g, -5a,,) r, bits

Prsg = (bg,--5D,..1)

C, Decoder

Friday, August 27, 2010

 Using the r, bits of s, find up to 7, errors in p .,

C, Decoder
1

+ Pwmss = (@g,--5a,,.1) r, bits

Prsg = (bg,--5D,..1)

C, Decoder

Friday, August 27, 2010

 Using the r, bits of s, find up to 7, errors in p .,

| C, Decoder I
1

Pwmss = (@g,--5a,,.1)

Prsg = (bg,--5D,..1)

C, Decoder

Friday, August 27, 2010

 Using the r, bits of s, find up to 7, errors in p .,

C, Decoder

Pwvss — (ay,

Prsg = (by,

C, Decoder

Friday, August 27, 2010

 Using the r, bits of s, find up to 7, errors in p .,

C, Decoder

C, Decoder

Friday, August 27, 2010

107 Comparison Between BCH and The New ECC Scheme

[OBCH

117 & New ECC Scheme
(| ¢| DR ?

! ! !

ll

lllllllllllllllllllllllllllllllllllllll

) ' 4
lll

36 3. 4 4.2 4.4 4.6
Iteration Number x 10°

" ?» CMRR

Carre bw Wagrere ha redeg Reveen N

Friday, August 27, 2010

0® Comparison Between BCH and The New ECC Scheme

%1

Ir . ! ! !

O BCH : . z

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

010

101

001

\

/

110

Cells state

Friday, August 27, 2010

010

101

001

\

110

/

Cells state

2nd

Friday, August 27, 2010

010

101

001

\

110

/

Cells state

2nd

Friday, August 27, 2010

010

101

001

\

110

/

Cells state

2nd

11

Friday, August 27, 2010

010 101

001 110

\ /

Cells state

2nd

11

J/
i)
€%
 /
Friday, August 27, 2010

010 101

001 110

\ /

Cells state

2nd

11

J/
s
 /
Friday, August 27, 2010

010 101

001 110

\ /

Cells state

J/
i)
€%
 /
Friday, August 27, 2010

11 001 110

\ /

Cells state

WOM
ENCODER

e .
< G2

Friday, August 27, 2010

ay 'v -.- .- aY

00.11.01.10.11 ... 10

WOM
ENCODER

J/

11

001

\

/

110

Cells state

Friday, August 27, 2010

010 101

A page can be written twice beftore erasing

001 110

\ /

Cells state

00.11.01.10.11 ... 10

WOM
ENCODER

J

Friday, August 27, 2010

* A page can be written twice before erasing 010 101

001 110

\ /

Cells state

000.001.100.010.001 ... 010

WOM
ENCODER

/
Lo 2

Friday, August 27, 2010

* A page can be written twice before erasing 010 101

001 110

\ /

Cells state

000.001.100.010.001 ... 010

01.10.00.10.11 ... 11

WOM
ENCODER

J/

/
Friday, August 27, 2010

: |’ ‘)“ “\- .

sSsuMMIT

A DA(E Ore \ D o) — 4 D per ' w

* A page can be written twice before erasing

01.10.00.10.11 ... 11

WOM
ENCODER
J/
> 100.010.000.010.001 ... 001

10 010 101
11 001 110
Cells state

000.001.100.010.001 ... 010

Friday, August 27, 2010

RR

— g Resean N

sSsuMMIT

o Each page stores 2KKB/1.5 = 4/3K B per write
* A page can be written twice before erasing

01.10.00.10.11 ... 11

WOM
ENCODER

> 100.010.000.010.001 ... 001

10 010 101
11 001 110
Cells state

000.001.100.010.001 ... 010

100.010.000.010.001 ... 001

RR

Friday, August 27, 2010

 Each page stores 2IKB/1.5 = 4/3KB per write

* A page can be written twice before erasing 010

101

001

\

L

110

Cells state

000.001.100.010.001 ... 010

01.10.00.10.11 ... 11 100.010.000.010.001 ... 001

100.100.000.001.010 ... 000

WOM
ENCODER

100.010.000.010.001 ... 001

Friday, August 27, 2010

\S v W v et S 7 L

 Each page stores 2IKB/1.5 = 4/3KB per write
* A page can be written twice before erasing 010 101

100 011

001 110

\ L

Cells state

000.001.100.010.001 ... 010

01.10.00.10.11 ... 11 100.010.000.010.001 ... 001
100.100.000.001.010 ... 000

WOM
ENCODER

100.010.000.010.001 ... 001

Friday, August 27, 2010

—10VW 10U Ollv C JIOCK

 Each page stores 2IKB/1.5 = 4/3KB per write
* A page can be written twice before erasing

100

011

01

10 010 101

11 001 110
Cells state

01.10.00.10.11 ... 11

000.001.100.010.001 ...

010

100.010.000.010.001 ...

001

100.100.000.001.010 ...

000

WOM
ENCODER
J/
> 100.010.000.010.001 ... 001

000.010.001.100.000 ...

010

Va

Friday, August 27, 2010

= How 10 Implement? (In

 Each page stores 2IKB/1.5 = 4/3KB per write
* A page can be written twice before erasing

/

DIOC

WOM
ENCODER

01

100

011

10

010

101

11

001

\

L

110

Cells state

000.001.100.010.001 ...

010

100.010.000.010.001 ...

001

100.100.000.001.010 ...

000

A

000.010.001.100.000 ...

010

Va

001.010.100.000.100

. 010[3{3

Friday, August 27, 2010

sSsuMMIT

A page can be written twice before erasing
Pages are encoded using the WOM code

Cells state

WOM
ENCODER

Friday, August 27, 2010

ach page stores 2IKB/1.5 = 4/3KB per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Cells state

WOM
ENCODER

Friday, August 27, 2010

ach page stores 2IKB/1.5 = 4/3KB per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without

Cells state
erasing

WOM
ENCODER

Friday, August 27, 2010

ach page stores 2IKB/1.5 = 4/3KB per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without
erasing

Read before write at the second write

Cells state

WOM
ENCODER

Friday, August 27, 2010

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without Cells state
erasing

Read before write at the second write
01.11.10.00.01 ... 00

WOM
ENCODER

Friday, August 27, 2010

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its

pages as invalid

Again write pages using the WOM code without Celis state
erasing

Read before write at the second write

01.11.10.00.01 ... 00

WOM
ENCODER

0 .001.10.17°.01... 1/

Friday, August 27, 2010

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its

pages as invalid

Again write pages using the WOM code without Celis state
erasing

Read before write at the second write

01.11.10.00.01 ... 00

WOM
ENCODER

0 .001.10.17°.01... 1/

Friday, August 27, 2010

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its

pages as invalid

Again write pages using the WOM code without Celis state
erasing

Read before write at the second write

01.11.10.00.01 ... 00

WOM
ENCODER

0 .001.10.17°.01... 1/

Friday, August 27, 2010

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without Cells state
erasing

Read before write at the second write

WOM
ENCODER

Friday, August 27, 2010

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without Cells state
erasing

Read before write at the second write
00.11.00.01.11 ... 10

WOM
ENCODER

Friday, August 27, 2010

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its

pages as invalid

Again write pages using the WOM code without Celis state
erasing

Read before write at the second write

00.11.00.01.11 ... 10

WOM
ENCODER

1 '.10.000.01'.001 ... 01

Friday, August 27, 2010

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without Cells state
erasing

Read before write at the second write
00.11.00.01.11 ... 10

WOM
ENCODER

1 '.10.000.01'.001 ... 01

Friday, August 27, 2010

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without Cells state
erasing

Read before write at the second write
00.11.00.01.11 ... 10

WOM
ENCODER

1 '.10.000.01'.001 ... 01

Friday, August 27, 2010

\S v W v S 7 L

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its

pages as invalid

Again write pages using the WOM code without Celis state
erasing

Read before write at the second write

00.11.00.01.11 ... 10

WOM
ENCODER

1 '.10.000.01'.001 ... 01

Friday, August 27, 2010

How to implement? (in SL.C block)

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without

erasing
Read before write at the second write

00.11.00.01.11 ... 10

WOM
ENCODER

1 '.10.000.01'.001 ... 01

01 100 011
10 010 101
11 001 110

\

L

Cells state

Friday, August 27, 2010

/

4
't ': ﬂ ,

)~ 4
Va

= How to implement? (in SL.C block)

Each page stores 21K B/1.5 = 4/3KB per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without

erasing
Read before write at the second write
00.11.00.01.11 ... 10

WOM
ENCODER

1 '.10.000.01'.001 ... 01

100 011

10 010 101

11 001 110
Cells state

001.010.100.000.100 ... 010 R._B.

Friday, August 27, 2010

/

)~ 4
Va

How to implment? (in SLC block)

Each page stores 21K B/1.5 = 4/3KB per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without

erasing
Read before write at the second write

00.11.00.01.11 ... 10

WOM
ENCODER

1 '.10.000.01'.001 ... 01

01 100 011
10 010 101
11 001 110

\

L

Cells state

Friday, August 27, 2010

1OW 1O pDleme . 11U

Each page stores 2K B/1.5 = 4/3KE per write
* A page can be written twice before erasing
 Pages are encoded using the WOM code

 \When the block has to be rewritten, mark its
pages as invalid

* Again write pages using the WOM code without

erasing
* Read before write at the second write

/

_'v
d

100 011

10 010 101

11 001 110
Cells state

Friday, August 27, 2010

How to implement? (in SL.C block)

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without
erasing

Read before write at the second write

Advantages:

» The number of bits written per cell is 4/3
* Possible to write twice before a physical
erasure

/

‘ A

01 100 011
10 010 101
11 001 110

\

L

Cells state

Friday, August 27, 2010

x10° BER of the First and Second Write for WOM Codes

2.0 I
Second Write

First Write

BER

. 15
v@ Iteration Number % 10°

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

> o » CMRR

Carre bw Wagrere ha redeg Reveen N

Friday, August 27, 2010

sSuMMIT

1’ 2 v J ’. ” 2_ = [

The WOM-rate i = R+ R, = log,(3) » 1.58, achieved for p = 1/3

9 9

v
> 8 » CMRR

@ b Wagrave Bae rodbeng Reveen N

Friday, August 27, 2010

sSuMMIT

U 15) | 9P € |V, V. -P
The WOM-rate i = R+ R, = log,(3) » 1.58, achieved for p = 1/3

= Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

s Iy = N(P), Ky =

/
© o 5 CVRR

Friday, August 27, 2010

: |’ ‘)“ “\- .

sSuMMIT

=))

» Ity = n(p), Ky =

10 %2 er), 0. -P
The WOM-rate i = R+ R, = log,(3) » 1.58, achieved for p = 1/3
= Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

= We construct WOM-codes from any linear code:

/
© o 5 CVRR

Friday, August 27, 2010

C={(R,R,)|8p <10,0.3], R, < h(p), R, <1-p}

The WOM-rate i = R + R, = log,(3) » 1.58, achieved for p = 1/3

= Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

= We construct WOM-codes from any linear code:
 The [23,12,7] Golay code: (0.9458, 0.5217) R = 1.4632

Friday, August 27, 2010

C={(R,R)|%p<]0,05],R, < h(p),R, <1-p}

The WOM-rate i = R + R, = log,(3) » 1.58, achieved for p = 1/3

= Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

= We construct WOM-codes from any linear code:
 The [23,12,7] Golay code: (0.9458, 0.5217) R = 1.4632

e The [16,11,4] extended Hamming code (0.769, 0.6875), R = 1.456
and for the same rate we get (0.6875, 0.6875), R = 1.375

Friday, August 27, 2010

C={(R,R)|%p<]0,05],R, < h(p),R, <1-p}

The WOM-rate i = R + R, = log,(3) » 1.58, achieved for p = 1/3

* Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34
= We construct WOM-codes from any linear code:
« The [23,12,7] Golay code: (0.9458, 0.5217) R = 1.4632

e The [16,11,4] extended Hamming code (0.769, 0.6875), R = 1.456
and for the same rate we get (0.6875, 0.6875), R = 1.375

By computer search we found rate (0.7273, 0.7273), R = 1.4546

Friday, August 27, 2010

~y

(162" 2 2] Reed-Muller [16 5 8] (Shortened) i~
“‘—qﬁq‘_o -

(244 2] Rwest and Shamir)) /)

[10,176,76 2] Wu's code

04l (233300179 2'2 2] Golay code [23.11 8] “-.L_
|
0.3f [24,7898574 2'2 2] Golay code (24,128 b
0.2+ -
Capacity
0.1 Achieved i
Computer Search

U | | | 1 | 1 1 1 | e
0 0.1 0.2 0.3 0.4 05 06 07 08 09 \f

: 1
55 » CMRR

22

o v Wagare b redeg Revsan N

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

Friday, August 27, 2010

= More analysis of codes and error behavior -

COME TO BOOTH #510!

Friday, August 27, 2010

