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MSB of first | LSB of first | MSB of last | LSB of last
index 214 cells 214 cells 214 cells 214 cells
1 page 0 page 4 page 1 page 5
2 page 2 page 8 page 3 page 9
3 page 6 page 12 page 7 page 13
4 page 10 page 16 page 11 page 17
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= Remarks:
 We measured many more iterations than the manufacturer’s
guaranteed number of erasures
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 The data is read and compared to find errors
= Remarks:

« We measured many more iterations than the manufacturer’s
guaranteed number of erasures

« The experiment was done in a lab conditions and related factors
such as temperature change, intervals between erasures or
multiple readings before erasures were not considered
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e Program the LSB and MSB pages with the same values

(cells can be in state 11 or 00)
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 Program the LSB and MSB pages with the same values
(cells can be in state 11 or 00) 11

 Program the data in the MSB pages, and program all LSB
pages to all-1 bit values (cells can be in state 00 or 01)
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Single Bit Storage in MLC Flash

I
-Normal run

Only MSB

Only LSB

MSB and LSB the same

LSB one

e & T
Iteration Number
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Use the chip for 50,000 iterations as an MLC and 150,000
iterations as an SLC

o Use the chip for 100,000 iterations as an MLC and 100,000
iterations as an SLC

» Use the chip for 150,000 iterations as an MLC and 50,000
iterations as an SLC
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Storing Two and Then One Blt in MLC

— MLC for 5. 104 Iterations

MLC for 10-104 Iterations

MLC for 15-10% Iterations

1
Iteration Number
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= Our goal: to correct errors in a pair of pages together
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same group of cells, errors are still correctec
iIndependently

= Our goal: to correct errors in a pair of pages together

= |f acellisin error, its level will typically increase by one
level
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C, is a t,-error-correcting BCH code, where 7, > 1,
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C, is a t,-error-correcting BCH code, where 7, > 1,
 The codes are “compatible” —
For the same information word, the r, redundancy bits
generated by the encoder of C, are identical to the first r,
redundancy bits generated by the encoder of C,

J/
i )
€%
 /
Friday, August 27, 2010




: |’ ‘ )“ “\- .

sSuMMIT

C, is a t,-error-correcting BCH code, where 7, > 1,

 The codes are “compatible” —
For the same information word, the r, redundancy bits

generated by the encoder of C, are identical to the first r,
redundancy bits generated by the encoder of C,
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C, is a t,-error-correcting BCH code, where 7, > 1,
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For the same information word, the r, redundancy bits
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- (), is at,-error-correcting BCH code
C, is a 1,-error-correcting BCH code, where 7, > 7,

 The codes are “compatible” —
For the same information word, the r, redundancy bits

generated by the encoder of C, are identical to the first r,
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Pisg = (bgs--,b,.1)
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o Pyep = (@g,..a, )and p, o, = (b,,....b, ) share the same group of cells.
« Calculate s,, the r, redundancy bits of ', corresponding to p ;s
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o Pusp— (@g,a, )and p, o = (b.....b, ) share the same group of cells.
« Calculate s,, the r, redundancy bits of ', corresponding to p ;s
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o Pusp— (@g,a, )and p, o = (b.....b, ) share the same group of cells.
« Calculate s,, the r, redundancy bits of ', corresponding to p ;s
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C, Decoder
1

Pusg = (g, -5a,,) r, bits

Prsg = (bg,--5D,..1)

C, Decoder

Friday, August 27, 2010



C, Decoder
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 Using the r, bits of s, find up to 7, errors in p .,
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o Each page stores 2KKB/1.5 = 4/3K B per write
* A page can be written twice before erasing
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 Each page stores 2IKB/1.5 = 4/3KB per write
* A page can be written twice before erasing
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A page can be written twice before erasing
Pages are encoded using the WOM code
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ach page stores 2IKB/1.5 = 4/3KB per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid
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ach page stores 2IKB/1.5 = 4/3KB per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without
erasing

Read before write at the second write
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Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without Cells state
erasing

Read before write at the second write
01.11.10.00.01 ... 00

WOM
ENCODER
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Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its

pages as invalid

Again write pages using the WOM code without Celis state
erasing

Read before write at the second write

01.11.10.00.01 ... 00
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A page can be written twice before erasing
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Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without Cells state
erasing

Read before write at the second write
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Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without Cells state
erasing

Read before write at the second write
00.11.00.01.11 ... 10

WOM
ENCODER
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Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
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Again write pages using the WOM code without Celis state
erasing

Read before write at the second write
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Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
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Again write pages using the WOM code without Celis state
erasing

Read before write at the second write

00.11.00.01.11 ... 10
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How to implement? (in SL.C block)

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without

erasing
Read before write at the second write

00.11.00.01.11 ... 10

WOM
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1 '.10.000.01'.001 ... 01
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= How to implement? (in SL.C block)

Each page stores 21K B/1.5 = 4/3KB per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without

erasing
Read before write at the second write
00.11.00.01.11 ... 10

WOM
ENCODER

1 '.10.000.01'.001 ... 01
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11 001 110
Cells state
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How to implment? (in SLC block)

Each page stores 21K B/1.5 = 4/3KB per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without

erasing
Read before write at the second write

00.11.00.01.11 ... 10
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Each page stores 2K B/1.5 = 4/3KE per write
* A page can be written twice before erasing
 Pages are encoded using the WOM code

 \When the block has to be rewritten, mark its
pages as invalid

* Again write pages using the WOM code without

erasing
* Read before write at the second write

/
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How to implement? (in SL.C block)

Each page stores 2K B/1.5 = 4/3KE per write
A page can be written twice before erasing
Pages are encoded using the WOM code

When the block has to be rewritten, mark its
pages as invalid

Again write pages using the WOM code without
erasing

Read before write at the second write

Advantages:

» The number of bits written per cell is 4/3
* Possible to write twice before a physical
erasure
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x10° BER of the First and Second Write for WOM Codes
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The WOM-rate i = R+ R, = log,(3) » 1.58, achieved for p = 1/3
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The WOM-rate i = R+ R, = log,(3) » 1.58, achieved for p = 1/3

= Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

s Iy = N(P), Ky =
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The WOM-rate i = R+ R, = log,(3) » 1.58, achieved for p = 1/3
= Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

= We construct WOM-codes from any linear code:
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C={(R,R,)|8p <10,0.3], R, < h(p), R, <1-p}

The WOM-rate i = R + R, = log,(3) » 1.58, achieved for p = 1/3

= Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

= We construct WOM-codes from any linear code:
 The [23,12,7] Golay code: (0.9458, 0.5217) R = 1.4632
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C={(R,R)|%p<]0,05],R, < h(p),R, <1-p}

The WOM-rate i = R + R, = log,(3) » 1.58, achieved for p = 1/3

= Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34

= We construct WOM-codes from any linear code:
 The [23,12,7] Golay code: (0.9458, 0.5217) R = 1.4632

e The [16,11,4] extended Hamming code (0.769, 0.6875), R = 1.456
and for the same rate we get (0.6875, 0.6875), R = 1.375
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C={(R,R)|%p<]0,05],R, < h(p),R, <1-p}

The WOM-rate i = R + R, = log,(3) » 1.58, achieved for p = 1/3

* Rivest and Shamir constructed WOM-codes of rates
(2/3, 2/3) and (0.67, 0.67), R =1.34
= We construct WOM-codes from any linear code:
« The [23,12,7] Golay code: (0.9458, 0.5217) R = 1.4632

e The [16,11,4] extended Hamming code (0.769, 0.6875), R = 1.456
and for the same rate we get (0.6875, 0.6875), R = 1.375

By computer search we found rate (0.7273, 0.7273), R = 1.4546
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= More analysis of codes and error behavior -

COME TO BOOTH #510!
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