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SLC Vs. MLC Flash

 In SLC flash, each cell stores a single bit
 In MLC, each cell can store multiple bits 

(typically 2 bits)
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Flash Memory Structure

 In MLC flash the two bits within a cell DO NOT belong 
to the same page – MSB page and LSB page
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Flash Memory Structure

 In MLC flash the two bits within a cell DO NOT belong 
to the same page – MSB page and LSB page

 Given a group of cells, all the MSB’s consist of one 
page and all the LSB’s consist of another page
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Flash Memory Structure

 In MLC flash the two bits within a cell DO NOT belong 
to the same page – MSB page and LSB page

 Given a group of cells, all the MSB’s consist of one 
page and all the LSB’s consist of another page
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Experiment Description

 We checked several flash memory MLC blocks
 For each block the following steps are repeated

• The block is erased
• A pseudo-random data is written to the block
• The data is read and compared to find errors

 Remarks:
• We measured many more iterations than the manufacturer’s 

guaranteed number of erasures
• The experiment was done in a lab conditions and related factors 

such as temperature change, intervals between erasures or 
multiple readings before erasures were not considered
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Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?
 There are several ways:

• Program only the MSB pages
• Program only the LSB pages
• Program the LSB and MSB pages with the same values 

(cells can be in state 11 or 00)
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Single Bit Representation in MLC Flash
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 There are several ways:
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Single Bit Representation in MLC Flash

 How to store a single bit in MLC flash?
 There are several ways:

• Program only the MSB pages
• Program only the LSB pages
• Program the LSB and MSB pages with the same values 

(cells can be in state 11 or 00)
• Program the data in the MSB pages, and program all LSB 
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Single Bit Representation in MLC Flash

 What happens when the chip is first used as an MLC 
and then switched to be used as an SLC?

 We ran the following experiments:
• Use the chip for 50,000 iterations as an MLC and 150,000 

iterations as an SLC
• Use the chip for 100,000 iterations as an MLC and 100,000 

iterations as an SLC
• Use the chip for 150,000 iterations as an MLC and 50,000 

iterations as an SLC
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ECC scheme for MLC flash

 A common ECC in flash today is a BCH code
 Errors are corrected in each page independently
 In particular, in a pair of SLC and MLC pages sharing the 

same group of cells, errors are still corrected 
independently

 Our goal: to correct errors in a pair of pages together
 If a cell is in error, its level will typically increase by one 

level
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 How to correct errors in a pair of pages together?
• First, one level errors are corrected and then the other errors

 Code construction:
• C1 is a t1-error-correcting BCH code 

C2 is a t2-error-correcting BCH code, where t2 > t1

• The codes are “compatible” – 
For the same information word, the r1 redundancy bits 
generated by the encoder of C1 are identical to the first r1 
redundancy bits generated by the encoder of C2

14

Information word

r1 bits

s1

r2 bits
s2

C1 Encoder

C2 Encoder

Friday, August 27, 2010



ECC scheme for MLC flash

15

Friday, August 27, 2010



ECC scheme for MLC flash
 Code construction:

15

Friday, August 27, 2010



ECC scheme for MLC flash
 Code construction:

15

pMSB = (a0,…,an-1)

pLSB = (b0,…,bn-1)

Friday, August 27, 2010



ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code, 
where t2 > t1 , and the codes are compatible

15

pMSB = (a0,…,an-1)

pLSB = (b0,…,bn-1)

Friday, August 27, 2010



ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code, 
where t2 > t1 , and the codes are compatible

15

pMSB = (a0,…,an-1)

C1 Encoder

pLSB = (b0,…,bn-1)

Friday, August 27, 2010



ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code, 
where t2 > t1 , and the codes are compatible

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

pLSB = (b0,…,bn-1)

Friday, August 27, 2010



ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code, 
where t2 > t1 , and the codes are compatible

 Encoding:

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

pLSB = (b0,…,bn-1)

Friday, August 27, 2010



ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code, 
where t2 > t1 , and the codes are compatible

 Encoding:
• pMSB = (a0,…,an-1) and pLSB = (b0,…,bn-1) share the same group of cells. 

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

pLSB = (b0,…,bn-1)

Friday, August 27, 2010



ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code, 
where t2 > t1 , and the codes are compatible

 Encoding:
• pMSB = (a0,…,an-1) and pLSB = (b0,…,bn-1) share the same group of cells. 

• Calculate s1, the r1 redundancy bits of C1 corresponding to pMSB

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

pLSB = (b0,…,bn-1)

Friday, August 27, 2010



ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code, 
where t2 > t1 , and the codes are compatible

 Encoding:
• pMSB = (a0,…,an-1) and pLSB = (b0,…,bn-1) share the same group of cells. 

• Calculate s1, the r1 redundancy bits of C1 corresponding to pMSB

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code, 
where t2 > t1 , and the codes are compatible

 Encoding:
• pMSB = (a0,…,an-1) and pLSB = (b0,…,bn-1) share the same group of cells. 

• Calculate s1, the r1 redundancy bits of C1 corresponding to pMSB

15

pMSB = (a0,…,an-1) r1 bits

s1

C1 Encoder

C2 Encoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Code construction:

• C1 is a t1-error-correcting BCH code, C2 is a t2-error-correcting BCH code, 
where t2 > t1 , and the codes are compatible

 Encoding:
• pMSB = (a0,…,an-1) and pLSB = (b0,…,bn-1) share the same group of cells. 

• Calculate s1, the r1 redundancy bits of C1 corresponding to pMSB

15

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Encoder

C2 Encoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010



ECC scheme for MLC flash

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB 

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB 
• Change the state of erroneous cells as follows: 

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB 
• Change the state of erroneous cells as follows: 

– Level 11 is changed to level 10 and vice versa

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB 
• Change the state of erroneous cells as follows: 

– Level 11 is changed to level 10 and vice versa

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB 
• Change the state of erroneous cells as follows: 

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB 
• Change the state of erroneous cells as follows: 

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB 
• Change the state of erroneous cells as follows: 

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB 
• Change the state of erroneous cells as follows: 

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

• Using the r1 bits of s1, find up to t1 errors in pMSB

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB 
• Change the state of erroneous cells as follows: 

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

• Using the r1 bits of s1, find up to t1 errors in pMSB

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB 
• Change the state of erroneous cells as follows: 

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

• Using the r1 bits of s1, find up to t1 errors in pMSB

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010



ECC scheme for MLC flash
 Decoding:

• Using the r2 bits of s2 find up to t2 errors in pMSB + pLSB 
• Change the state of erroneous cells as follows: 

– Level 11 is changed to level 10 and vice versa
– Level 00 is changed to level 10 and level 01 is changed to level 00

• Using the r1 bits of s1, find up to t1 errors in pMSB

16

pMSB = (a0,…,an-1) r1 bits

s1

r2 bits

s2

C1 Decoder

C2 Decoder

pLSB = (b0,…,bn-1)

pMSB+ pLSB

01

10

00

11

MSB/LSB

Friday, August 27, 2010



17

Friday, August 27, 2010



18

Friday, August 27, 2010



19

Write Once Memory (WOM) 
Codes for SLC

Friday, August 27, 2010



19

Write Once Memory (WOM) 
Codes for SLC

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Friday, August 27, 2010



19

Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Friday, August 27, 2010



19

Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

Friday, August 27, 2010



19

Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

1st 
write

2nd 
write

data

cells

Friday, August 27, 2010



19

Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

1st 
write

2nd 
write

data 01

cells 100

Friday, August 27, 2010



19

Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

1st 
write

2nd 
write

data 01 11

cells 100 110

Friday, August 27, 2010



19

Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

1st 
write

2nd 
write

data 01 11

cells 100 110

Friday, August 27, 2010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

1st 
write

2nd 
write

data 01 11

cells 100 110

Friday, August 27, 2010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

Friday, August 27, 2010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…

00.11.01.10.11 … 10

WOM 
ENCODER
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…

00.11.01.10.11 … 10

WOM 
ENCODER

000.001.100.010.001 … 010
Friday, August 27, 2010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010

Friday, August 27, 2010



19

Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11

100.010.000.010.001 … 001
Friday, August 27, 2010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11

100.010.000.010.001 … 001

100.010.000.010.001 … 001

Friday, August 27, 2010



19

Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11

100.010.000.010.001 … 001

100.010.000.010.001 … 001
100.100.000.001.010 … 000
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11

100.010.000.010.001 … 001

100.010.000.010.001 … 001
100.100.000.001.010 … 000

Friday, August 27, 2010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
01.10.00.10.11 … 11

100.010.000.010.001 … 001

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D
Friday, August 27, 2010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D
Friday, August 27, 2010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D
Friday, August 27, 2010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D
Friday, August 27, 2010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D

01.11.10.00.01 … 00
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

I N V A L I D

01.11.10.00.01 … 00

011.001.101.111.011 … 111
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

000.001.100.010.001 … 010
100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

01.11.10.00.01 … 00

011.001.101.111.011 … 111

011.001.101.111.011 … 111
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

01.11.10.00.01 … 00

011.001.101.111.011 … 111

011.001.101.111.011 … 111

Friday, August 27, 2010



19

Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER
000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101
101.100.101.101.110 … 000
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER
000.010.001.100.000 … 010
001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101
101.100.101.101.110 … 000
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

001.010.100.000.100 … 010

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101
101.100.101.101.110 … 000

000.110.111.111.110 … 010
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…
WOM 

ENCODER

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101
101.100.101.101.110 … 000

000.110.111.111.110 … 010
111.110.100.101.101 … 110
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…

011.001.101.111.011 … 111
111.110.000.011.001 … 101
101.100.101.101.110 … 000

000.110.111.111.110 … 010
111.110.100.101.101 … 110
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Write Once Memory (WOM) 
Codes for SLC

 A scheme for storing two bits twice using only 
three cells before erasing the cells

 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write
• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its 

pages as invalid
• Again write pages using the WOM code without 

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

Cells state

…

011.001.101.111.011 … 111
111.110.000.011.001 … 101
101.100.101.101.110 … 000

000.110.111.111.110 … 010
111.110.100.101.101 … 110

Advantages: 
• The number of bits written per cell is 4/3
• Possible to write twice before a physical 
erasure

Friday, August 27, 2010
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BER for the First and Second Writes
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WOM-Codes with two writes
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WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
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WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
• First write: k1 bits, R1 = k1/n, second write: k2 bits, R2 = k2/n
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WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
• First write: k1 bits, R1 = k1/n, second write: k2 bits, R2 = k2/n
• Capacity region (Heegard 1986, Fu and Han Vinck 1999)
  C = { (R1, R2) | $p ∊ [0, 0.5], R1 ≤ h(p), R2 ≤ 1 - p }
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WOM-Codes with two writes

 Assume there are n cells and two writes, t =2
• First write: k1 bits, R1 = k1/n, second write: k2 bits, R2 = k2/n
• Capacity region (Heegard 1986, Fu and Han Vinck 1999)
  C = { (R1, R2) | $p ∊ [0, 0.5], R1 ≤ h(p), R2 ≤ 1 - p }
    The WOM-rate R = R1+ R2 ≤ log2(3) » 1.58, achieved for p = 1/3
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• Capacity region (Heegard 1986, Fu and Han Vinck 1999)
  C = { (R1, R2) | $p ∊ [0, 0.5], R1 ≤ h(p), R2 ≤ 1 - p }
    The WOM-rate R = R1+ R2 ≤ log2(3) » 1.58, achieved for p = 1/3

 Rivest and Shamir constructed WOM-codes of rates        
(2/3, 2/3) and (0.67, 0.67), R =1.34

 We construct WOM-codes from any linear code:
• The [23,12,7] Golay code: (0.9458, 0.5217) R = 1.4632
• The [16,11,4] extended Hamming code (0.769, 0.6875), R = 1.456  

and for the same rate we get (0.6875, 0.6875), R = 1.375
• By computer search we found rate (0.7273, 0.7273), R = 1.4546
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