

Geometry and Operation scheme for Reliable 3-bits NAND

Sukkwang Park, YeonJoo Jeong, Myoung Kwan Cho, Kun-Ok Ahn and Yohwan Koh Hynix Semiconductor Inc.

- Physical size reduction
 - reliability degradation (IPD scaling, small number of electrons in floating gate)
 - fluctuation in device structure
- Multi levels per cell
 - device window narrower
 - Increased pulse numbers for PGM and Read operation

Contents

Geometry

• IPD layer, Control gate-Active space, dopant concentration, Floating gate height

Operation

- program and read disturb
- erase pulse

Vth distributions of 3x nm TLC

7 levels should be positioned above 0V. → narrower distribution, higher programmed Vth.

Programmed Vth saturation

Hard to reach programmed Vth over 5V.

• leakage current through IPD during PGM operation.

Channel edge direct inversion

Channel edge is directly inverted by CG during read.
 → Higher doping concentration in active edge is required.

Vt drop at Vt saturation region

- Vt drop with repeated Vt read at saturation region.
 - charge detrapping from IPD layer.
 - leakage from FG to CG even by small read voltage.

Vt drop dependency on IPD thickness

Thicker Bottom Ox. and Top Ox. → smaller Vt drop Thicker Nitride → larger Vt drop

Programmed Vt

Thicker IPD

 \rightarrow low CG-channel coupling and programmed Vt.

High FG height

UV-Vth

■ UV Vth increase → low electric field, small number of electrons in FG

UV-Vth vs. Retention

Retention characteristic is improved in higher UV-Vth structure.

Contents

Geometry

• IPD layer, Control gate-Active space, dopant concentration, Floating gate height

Operation

- PGM and read disturb
- erase pulse

Program disturb

Low boosting level → FN tunneling disturb High boosting level → edge cell HCI disturb

Mode	Program Inhibit	Program
B/L	Vcc	0V
DSL	Vcc	Vcc
Pass W/L	Vpass1,2	Vpass
Sel. W/L	Vpgm	Vpgm
SSL	0V	0V
SL	Vcc	Vcc
Pwell	0V	0V

Santa Clara, CA

Ids-Vg curves of disturbed cell

Vth of erase cells are increased as proceeding of program operation.

W/L dependency of program disturb

- Severe disturbance in elder W/L.
- Edge cell HCI is negligible.
- Increasing Vpass → larger fail bits

Electric potential

Tunnel Ox. voltage: younger W/L > older W/L
 Channel boosting : younger W/L < older W/L
 HCI due to boosting level cut off,
 HCI from substrate ?

Read disturb

Edge W/L worst : edge HCI injectionPulse sequence optimization

Erase pulse

 Starting bias and an incremental step of erase pulse should be adjusted for each block and chip.

Summary

- Structure
 - IPD
 - Floating-gate height
 - Active edge dopant profile
 - UV-Vth
- Operation
 - Program disturb
 - Read disturb
 - Erase pulse