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Inter-Cell Coupling 

 FG-FG inter-cell coupling causes the charge 

in one cell to affect a neighboring cell’s 

threshold voltage. 
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Vt Distribution Widening 

 When considering each cell in isolation, the 

observed phenomenon is a “widening” of the 

threshold voltage distributions. 
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Coupling – a Model 

 Neglecting CFGXY, and assuming QFG=0 the 

floating gate voltage due to ICC is: 
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Coupling with Program & Verify 

 Program & Verify: 

• Charge is added to a cell in small increments 

• Vt is checked after each addition 

• Programming ceases upon reaching the desired Vt 

 Therefore, Vt of any given cell is affected only 

charge changes made to its neighbors after 

its own charging has been completed. 
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Existing Coupling-Mitigation Schemes 

 Proportional programming  

[Fastow et al, USP 6,996,004] 

 

 Intelligent read decoding  

[Li et al, USP 7,301,839] 
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Proportional Programming  [Fastow et al] 
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 Concurrent, incremental programming of all cells, 
tailored for near-simultaneous completion. 

 Pros:  

• Desired Vt for all cells (altered only by the last 
pulse of each neighbor);  

• Narrow distributions. 

• Insensitive to coupling parameters. 

• Simple read 

 Shortcomings: 

• Complicated, possibly slow programming 

• Can’t account for next line if programmed later 

• Can’t fully compensate when “pull” is greater than 
desired level (would require negative “bias”) 
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Intelligent Read Decoding [Li et al] 

 
 Simple, conventional programming 

 Based on coupling equations, parameters and on 

programming scheme, decode smartly to offset 

coupling effects. 

 Pros: 

• Simple programming 

• Overlapping distributions are separated by 
decoding 

• Cons: 

• Must know coupling parameters; no variation 
allowed. 

• Requires accurate reading of Vt 

• Complex, slow read 
Flash Memory Summit 2010 
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Our Approach: Constrained Coding 

 Forbid certain adjacent-cell level 

combinations: 

• Criterion depends on programming order 

• Threshold is a design trade-off 

 Programming: use only permissible 

combinations (legal code words) 

 Decoding: use inverse mapping 
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Constrained Coding – Main 

Features 

 Pros: 

• Limits the effect of inter-cell coupling → narrow 

distributions → many levels 

• Fairly simply encoding and decoding 

• Only need to know an upper bound on coupling 

coefficients 

 Cons: 

• Code rate <1 → some loss of capacity relative to 

ideal with narrow distributions. 
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Constrained Coding - Remarks 

 Can easily be combined with ECC 

 

 Complementary to the previous schemes and 

can be combined with them: 

• Semi-accurate programming + minimal restrictions  

• Some restrictions with simpler intelligent read 

decoding 
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Constrained Coding System 
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Example: 1-D, “Breadth 1st” Coding 

• 1-D: a single row of cells is considered 

• Programming (charge & verify) 

• All >0 cells programmed to level 1 

• All >1 cells programmed to level 2 

• … 

• Sequence eligibility criterion: 

 

 

• T represents a trade-off: 

• Large T: efficient coding, but  

wider distributions and fewer levels 

• Small T: opposite pros and cons 
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Required Redundancy (T=5,2 bpc) 

• Notation: 

• N(l;S) - number of legal (permissible) l-symbol 

code words 

• n  - number of program levels in a cell 

• S          - language of all legal code words 

• The required redundancy is (at least) 4.83% 
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Capacity Implication (T=5) 

• Assumption: constrained coding permitted an 

increase in the number of levels from 4 to 5. 

 

• Baseline:  

 

• Constrained coding: 

 

• A 10% increase in capacity 
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Design of encoder/decoder block 
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  We build graph of the constraint language  

• With 4 levels per cell, this example excludes the 
combinations (sequences) 3-0-3, 3-0-2 and 2-0-3. 
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Design of encoder/decoder block (cont.) 

 For demonstration, consider 

code rate = 2/3 

 For this, we can build a lookup table 

and use it. 
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   The design can also be implemented with  

   state machine. E.g., to exclude 3-0-3: 

Design of encoder-decoder block 

(cont.) 
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Conclusions 

• Constrained coding can be used to chop off 

the tail of Vt distributions with only a minor 

reduction in coding rate 
 

• Can be used beneficially to increase capacity  

or to increase reliability 
 

• Can replace proportional programming and 

intelligent decoding or complement them 

 

• Detailed papers in preparation 

• A patent application has been filed by Technion 
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