

Mitigating Inter-Cell Coupling Effects in MLC NAND Flash via Constrained Coding

Amit Berman and Yitzhak Birk {bermanam@tx, birk@ee}.technion.ac.il Technion – Israel Institute of Technology August, 2010

Santa Clara, CA August 19, 2010

- Problem Definition: Inter-Cell Coupling
- Related Work
- Novel Solution: Constrained Coding System
- An Example
- Conclusions

Inter-Cell Coupling

 FG-FG inter-cell coupling causes the charge in one cell to affect a neighboring cell's threshold voltage.

Santa Clara, CA August 2010

V_t Distribution Widening

 When considering each cell in isolation, the observed phenomenon is a "widening" of the threshold voltage distributions.

Coupling – a Model

Neglecting CFGXY, and assuming QFG=0 the floating gate voltage due to ICC is:

$$V_{FG} = \frac{C_{ONO}V_{CG} + C_{FGX}\left(V_{1} + V_{2}\right) + C_{FGY}\left(V_{3} + V_{4}\right) + V_{FGCG}\left(V_{5} + V_{6}\right)}{C_{TUN} + C_{ONO} + 2C_{FGX} + 2C_{FGY} + 2C_{FGCG}}$$

Program & Verify:

- Charge is added to a cell in small increments
- V_t is checked after each addition
- Programming ceases upon reaching the desired V_t

 Therefore, V_t of any given cell is affected only charge changes made to its neighbors after its own charging has been completed.

The effect of inter-cell coupling depends on the programming scheme.

 Proportional programming [Fastow et al, USP 6,996,004]

 Intelligent read decoding [Li et al, USP 7,301,839]

Proportional Programming [Fastow et al]

- Concurrent, incremental programming of all cells, tailored for near-simultaneous completion.
- Pros:
 - Desired V_t for all cells (altered only by the last pulse of each neighbor);
 - Narrow distributions.
 - Insensitive to coupling parameters.
 - Simple read
- Shortcomings:
 - Complicated, possibly slow programming
 - Can't account for next line if programmed later
 - Can't fully compensate when "pull" is greater than desired level (would require negative "bias")

Santa Clara, CA August 2010

Intelligent Read Decoding [Li et al]

- Simple, conventional programming
- Based on coupling equations, parameters and on programming scheme, decode smartly to offset coupling effects.
- Pros:
 - Simple programming
 - Overlapping distributions are separated by decoding
- Cons:
 - Must know coupling parameters; no variation allowed.
 - Requires accurate reading of V_t
- Complex, slow read

- Forbid certain adjacent-cell level combinations:
 - Criterion depends on programming order
 - Threshold is a design trade-off
- Programming: use only permissible combinations (legal code words)
- Decoding: use inverse mapping

Constrained Coding – Main Features

Pros:

- Limits the effect of inter-cell coupling → narrow distributions → many levels
- Fairly simply encoding and decoding
- Only need to know an upper bound on coupling coefficients

Cons:

 Code rate <1 → some loss of capacity relative to ideal with narrow distributions.

Can easily be combined with ECC

- Complementary to the previous schemes and can be combined with them:
 - Semi-accurate programming + minimal restrictions
 - Some restrictions with simpler intelligent read decoding

Constrained Coding System

Memory Example: 1-D, "Breadth 1st" Coding

- 1-D: a single row of cells is considered
- Programming (charge & verify)
 - All >0 cells programmed to level 1
 - All >1 cells programmed to level 2
- Sequence eligibility criterion:

 $D(C) = \max\{N_L - C, 0\} + \max\{N_R - C, 0\} < T$

- T represents a trade-off:
 - Large T: efficient coding, but wider distributions and fewer levels
 - Small T: opposite pros and cons

Flash Memory Summit 2010 Santa Clara, CA

. . .

 N_L , C, N_R : respective target levels BL_{i-1} BL_i BL_{i+1}

$$Redu(S) = 1 - \frac{\lim_{l \to \infty} \frac{\log_2 N(l;S)}{l}}{\log_2 n} = 0.0483$$

- Notation:
 - N(I;S) number of legal (permissible) I-symbol code words
 - n number of program levels in a cell
 - S language of all legal code words

• The required redundancy is (at least) 4.83%

- Assumption: constrained coding permitted an increase in the number of levels from 4 to 5.
- Baseline: $1.0 \cdot \log_2(4) = 2$
- Constrained coding: $0.95 \cdot \log_2(5) = 2.2 > 2$
- A 10% increase in capacity

Design of encoder/decoder block

We build graph of the constraint language

• With 4 levels per cell, this example excludes the combinations (sequences) 3-0-3, 3-0-2 and 2-0-3.

Santa Clara, CA August 2010

00	031
01	131
02	331
03	321
10	301
11	300
12	310
13	311
20	021
21	121
22	210
23	211
30	221
31	231
32	200
	00 01 02 03 10 11 12 13 20 21 22 23 23 30 31 32

Design of encoder-decoder block (cont.)

> The design can also be implemented with state machine. E.g., to exclude 3-0-3:

- Constrained coding can be used to chop off the tail of V_t distributions with only a minor reduction in coding rate
- Can be used beneficially to increase capacity or to increase reliability
- Can replace proportional programming and intelligent decoding or complement them
- Detailed papers in preparation
- A patent application has been filed by Technion

Flash Memory Summit 2010 Santa Clara, CA

Questions?

Amit Berman and Yitzhak Birk {bermanam@tx, birk@ee}.technion.ac.il Technion – Israel Institute of Technology August, 2010

Santa Clara, CA August 2010