

Will Phase Change Memory (PCM) Replace DRAM or NAND Flash?

Dr. Mostafa Abdulla High-Speed Engineering Sr. Manager, Micron

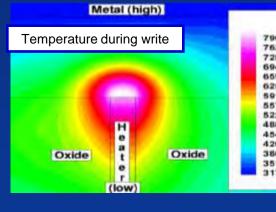
Marc Greenberg Product Marketing Director, Cadence

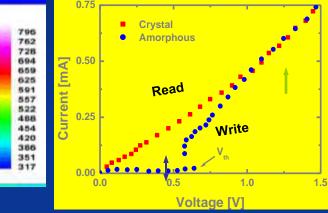
August 19, 2010 Flash Memory Summit

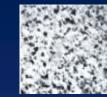
- "New memory" motivation (recognized ~1999)
- Current NVM (and DRAM) are becoming electrostatics limited
 - MOS transistor-based cell
 - Charge storage memory effect
- Starting to encounter physical scaling limitations
- Limitations manifesting first as degradation in reliability (endurance/retention)

Realization

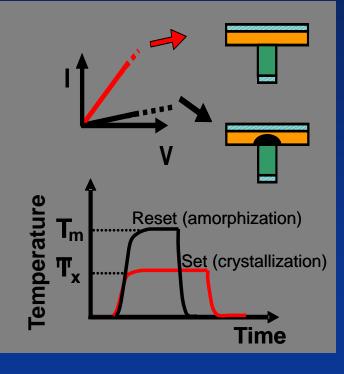
- Next-generation NVM will exploit new storage physics
- Significant innovation will take time (history says ~10-year "gestation")


Response


- PCM identified as the best candidate
- Research efforts validated the assumptions and initiated development
- PCM moving into production today
- We believe features of PCM will enable new usage models

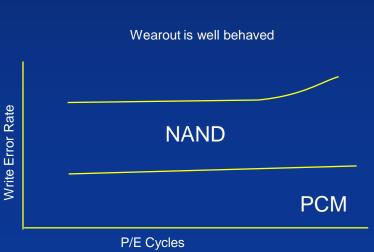

PCM Mechanisms

- Storage
 - GST: germanium-antimony-tellurium chalcogenide glass
 - Cell states varying from amorphous (high resistance) to crystalline (low resistance) states
- Read operation
 - Measure resistance of the GST
- Write operation
 - Heat GST via current flow (Joule effect)
 - Time at critical temperature determines cell state



Crystalline


Amorphous



Summary of Key PCM Reliability Metrics

Result:

- Management greatly simplified; no software overhead for some apps
- Post-stress shelf life problem solved
- Endurance can be increased significantly through management of bit errors; data is stable when successfully written

PCM Key Attributes

Attribute	РСМ	EEPROM	NOR	NAND	DRAM
Nonvolatile	Yes	Yes	Yes	Yes	No
Granularity	Small/Byte	Small/Byte	Large	Large	Small/Byte
Erase	No	No	Yes	Yes	No
Software	Easy	Easy	Moderate	Hard	Easy
Power	~Flash	~Flash	~Flash	~Flash	High
Write Bandwidth	1–15+ MB/s	13–30 KB/s	0.5–2 MB/s	10+ MB/s	100+ MB/s
Read Latency	50–100ns	200–200ns	70–100ns	15–50µs	20–80ns
Endurance	10 ⁶⁺	10 ⁵ –10 ⁶	10 ⁵	10 ⁴⁻⁵	Unlimited

PCM provides an new set of features combining components of NVM with DRAM

PCM Application Opportunities

Wireless systems

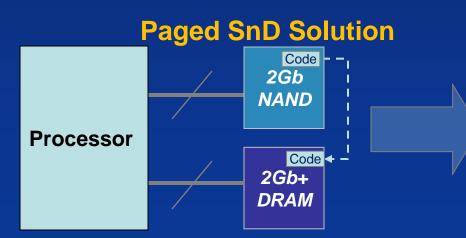
- Direct code execution, semi-static data and file storage
- > Bit alterability allows direct-write memory

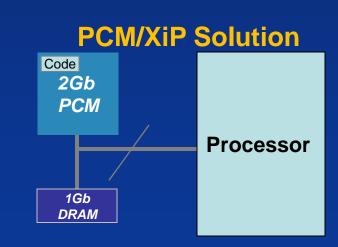
Solid state storage subsystems

- Frequently accessed pages and elements easily managed when manipulated in place
- > Caching with PCM will improve performance and reliability

Computing platforms

- Taking advantage of nonvolatility to reduce the power
- PCM offers endurance and write latency that are compelling for a number of novel solutions


Wireless Systems: LPDDR2-PCM Architecture Evolution


Paged SnD Solution

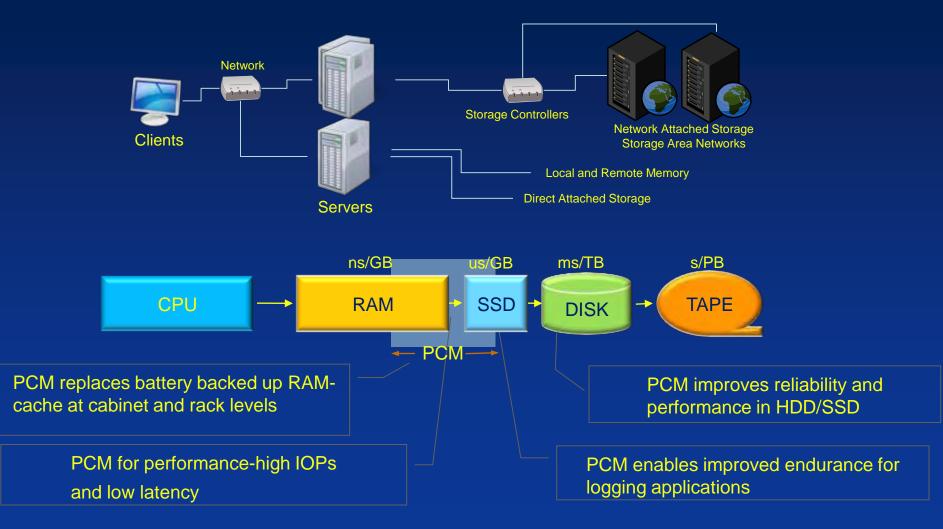
- Code stored in NVM
- Code shadowed or paged to DRAM to execute
- Reliability is a significant concern
- Significant performance variability

PCM/XiP Solution

- Code stored in PCM
- Code executed from PCM
- No reliability concerns for code
- Limited or no performance variability

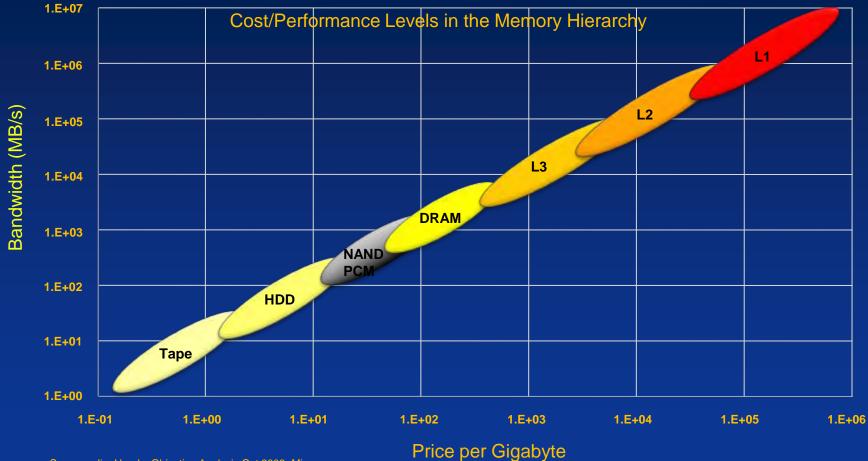
System Benefits of LPDDR2-PCM

- LPDDR2-PCM system architecture saves DRAM and power
- Performance mostly equivalent to DRAM
- PCM system architecture simplifies software
- Endurance and data retention are fundamentally decoupled, improving TTM
- PCM opens new usage models
- Persistent-RAM model (NV + bit alterability) changes application operation


 PCM file system performance close to spec (NAND/NOR lose performance due to erase)

PCM user improvements

- Instant on
- Boot time
- Application launch
- Application concurrency
- Power
- PCM reliability improvements
- PCM overcomes DRAM scaling and NAND reliability concerns



Memory Hierarchy in Servers and Storage Where PCM Can Fit

Memory Hierarchy

Sources: Jim Handy, Objective Analysis Oct 2009, Micron

- Phase change memory (PCM) technology is demonstrating the capability to enter the broad memory market and to become a mainstream memory
- PCM provides a new set of features for novel applications, combining components of NVM and DRAM, while at the same time being a sustaining and a disruptive technology
- Our prediction is that with PCM achieving technology maturity, having a scaling perspective, and having a broad application range, it will play a key role in the memory market for the next decade