
Beyond Block I/O
Exposing Native FTL Capabilities

Flash Memory Summit 2011
Santa Clara, CA

1

David Nellans
dnellans@fusionio.com

What is NVM?

Flash Memory Summit 2011
Santa Clara, CA

2

Storage?

Memory?

Volatile?

Interfaces Define Classifications

Flash Memory Summit 2011
Santa Clara, CA

3

Storage

Block oriented
Persistent namespace
Physically addressed

Memory

Word oriented
Volatile namespace
Virtually addressed

Random Access

Data Persistence

Interfaces Define Classifications

Flash Memory Summit 2011
Santa Clara, CA

4

Storage

Block oriented
Persistent namespace
Physically addressed

Memory

Word oriented
Volatile namespace
Virtually addressed

Random Access

Data Persistence

Traditional Storage Stack

Flash Memory Summit 2011
Santa Clara, CA

5

DBMS

OS

Filesystem

Applications

Device PBA

 Block Device
LBA

Fixed 1-1 Relationship

Storage Stack Using FTL

Flash Memory Summit 2011
Santa Clara, CA

6

DBMS

OS

Filesystem

Applications

Device PBA

 Block Device
LBA

FTL: Virtually Addressing LBA → PBA
 Any to (m)Any Mapping

Why Virtually Addressed Storage?

Flash Memory Summit 2011
Santa Clara, CA

7

Industry hides virtual addressing behind FTL

 Maintain block storage interface
 Hides limited cell endurance issues
 Hides asymmetric performance characteristics

Creates multiple redundant mapping layers

Application: ALB → FLB
Filesystem: FLB → LBA
FTL: LBA → PBA

Why not collapse
Tracking?

Virtually Addressed Storage Primitives

Flash Memory Summit 2011
Santa Clara, CA

8

trim(LBA)

 Hint to FTL to unmap LBA->PBA
 Improves wear leveling
 Improves write performance

 Analogous to free() in virtual memory system?

Virtually Addressed Storage Primitive

Flash Memory Summit 2011
Santa Clara, CA

9

trim(LBA)

 No data DMA required Addresses only

 Write after Trim (WaT) Well specified behavior

 Read after Trim (RaT) Return zeros?
Return old data?
Return new data?
Powercut situations?

New VA Storage Primitive

Flash Memory Summit 2011
Santa Clara, CA

10

persistent_trim(LBA)

 No data DMA required Addresses only

 Write after Trim (WaT) Well specified behavior

 Read after Trim (RaT) Must return zero!
Must survive powercut!
Requires metadata write
Slow?

Proposed VA Storage Primitives

Flash Memory Summit 2011
Santa Clara, CA

11

read(LBA) Vallocation on first access
 write(LBA) Vallocation on first access
trim(LBA) Hint for VA block deallocation
 persistent_ trim(LBA) Directive for VA block mapping

exists(LBA) Query state of allocation

read/write() are allocating operations
ptrim() is deallocating operation
exists() is querying operation

Proposed VA Storage Primitives

Flash Memory Summit 2011
Santa Clara, CA

12

read(LBA) – write(LBA) – trim (LBA)
 persistent_ trim(LBA) Directive for VA block mapping
 exists(LBA) Query state of allocation

 atomic_write(LBA's) Atomically write multiple LBAs

Virtual addressing inherently allows copy-on-write
FTL can support atomic vectored writes natively

More VA Storage Primitives

Flash Memory Summit 2011
Santa Clara, CA

13

read(LBA) – write(LBA) – trim (LBA)
 persistent_ trim(LBA) Directive for VA block mapping
 exists(LBA) Query state of allocation
 atomic_write(L, B, A) Atomically write multiple LBAs

nameless_write(data) Return optimal LBA range

Applications/FS may not care what LBA is
Return the LBA range optimal for the device

More VA Storage Primitives

Flash Memory Summit 2011
Santa Clara, CA

14

read(LBA) – write(LBA) – trim (LBA)
 persistent_ trim(LBA) Directive for VA block mapping
 exists(LBA) Query state of allocation
 atomic_write(LBA's) Atomically write multiple LBAs
 nameless_write(data) Return optimal LBA range

 Use-cases for these new primitives?

Atomic Write*

Flash Memory Summit 2011
Santa Clara, CA

15

DBMS implicitly write data twice to maintain correctness

Results in 2x data written overhead to flash.

 Often requires synchronous operations to disk.

Atomic-write allows databases to over-write in place
but maintain ACID compliance.

*Ouyang and Nellans - HPCA 2011

Atomic Write* Performance

Flash Memory Summit 2011
Santa Clara, CA

16*Ouyang and Nellans - HPCA 2011

TPC-C TPC-H SysBench
0

0.2

0.4

0.6

0.8

1

1.2

1.4

DB workload: TPC-C (DBT2) , TPC-H (DBT3) , SysBench
Buffer Pool : Database = 1 : 10

23% improvement (ACID compliant)8% improvement (not ACID compliant)

T
ra

n
s
a
c
tio

n
 T

h
ro

u
g

h
p

u
t

TPC-C TPC-H sysbench
0

0.2

0.4

0.6

0.8

1

1.2
Atomic-Write

Atomic Write* Data Written

Flash Memory Summit 2011
Santa Clara, CA

17*Ouyang and Nellans - HPCA 2011

DB workload: TPC-C (DBT2) , TPC-H (DBT3) , SysBench
Buffer Pool : Database = 1 : 10

46% improvement (not ACID compliant)

D
a
ta

 W
rite

n
 T

o
 D

is
k

43% reduction (ACID compliant)

Flash Memory Summit 2011
Santa Clara, CA

18

Reduce application mapping layers.
Example: Block caching onto flash from disk.

Applications

Backing Store Block Device: PBA

FTL: LBA → PBA

Applications

Flashcache: Flash Block → HDD block

Cache Hit
Cache Miss

ptrim()* and exists()*

*Nellans and Zappe - NVMW 2011

ptrim()* and exists()*

Flash Memory Summit 2011
Santa Clara, CA

19

Reduce application mapping layers.
Example: Block caching onto flash from disk.

Applications

Backing Store Block Device: PBA

FTL: LBA → PBA

Applications

Cache Tracking: 4.8GB RAM / 100 GB cache

 5.2TB devices PCIe flash devices
256GB DRAM for meta-data

*Nellans and Zappe - NVMW 2011

Flash Memory Summit 2011
Santa Clara, CA

20

Reduce application mapping layers.
Example: Block caching onto flash from disk.

Backing Store Block Device

FTL: Sparse HDD LBA → PBA

Applications

directCache 1.0: < 100MB Fixed Overhead

Lookup: exists()Insert: write() Eviction: ptrim()

ptrim()* and exists()*

*Nellans and Zappe - NVMW 2011

Flash Memory Summit 2011
Santa Clara, CA

21

 Reduce application mapping layers.

 Eliminate CoW for transactional systems.

Optimize flash device performance and wear-out.

 Step towards semantics for Storage Class Memory?

Virtually Address Storage Uses

Flash Memory Summit 2011
Santa Clara, CA

22

 Storage is now virtually addressed, embrace it!

 Backwards compatible with block interface

 Work up the stack

Applications have worked around block storage
Provide new primitives to applications
Leverage inherent properties of FTL for efficiency

Conclusions

Flash Memory Summit 2011
Santa Clara, CA

23

Questions and Comments

Thank you!

David Nellans
dnellans@fusionio.com

	Title of Presentation
	Free-format slide title
	Some Notes about this template
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

