

High Density, High Reliability Carbon Nanotube NRAM

Thomas Rueckes
CTO
Nantero

Nantero Overview

- Founded in 2001 to develop nonvolatile memory using carbon nanotubes (CNT) for high density standalone and embedded applications
 - CNT engineering in Boston
 - Circuit design, product, test, device & integration engineering in Sunnyvale
 - Government Business sold to Lockheed Martin in 2008 & successful NRAM test on space shuttle mission
 - Commercial development partnerships with IDMs & fabless companies for embedded and standalone memory applications in progress
- Technology development & IP licensing business model
 - >133 US patents awarded, >205 US applications pending, plus more worldwide
 - WSJ patent score card:
 - The only semiconductor start-up ranked (2009)
 - #2 ranked for scientific strength of IP (2010)
 - IEEE Spectrum; Semiconductor Manufacturing Category
 - #5 worldwide (2009)
 - #2 worldwide and #1 in US (2010)

Nantero Timeline

NRAM: RRAM with CNT Resistance Change Material

ON ('1')

-RESET (ON → OFF): CNT-to-CNT are not in physical contact = high resistance

-SET (OFF → ON): CNT are in physical contact = low resistance

SET is an electrostatic operation while RESET is phonon driven operation (phonon heating of CNT contacts)

NRAM Mechanism

- SET: electrostatic operation
 - Write voltage → electrostatic CNT-CNT attraction → CNT junction closure (ON)

CNTs remain in ON state due to physical adhesion (Eact ~ 5eV)

- RESET: phonon driven operation
 - Voltage applied → CNT phonon excitation → CNT separation (OFF)

 CNTs remain in OFF state due to high mechanical (1TPa) stiffness (Eact>>5eV)

CNT Process Integration

- -CNT Spin-on foundry capability at SVTC on 300mm & 200mm coat tracks
- -Tracemetals meets typical BEOL contamination specs (TXRF: <1E11/cm2)
- -CNT wafers being processed using 248nm, 193nm dry & *immersion* lithography
- -CNT Integration temperatures at standard 425C BEOL and higher if W interconnect only
- Conventional tooling for CNT RIE dry etch and post etch cleaning
- -CNT density controllable for different technology nodes

4Mb 140nm Carbon Nanotube NRAM

140nm 4Mb sample	Write: SET & RESET (-65C to +165C operation)
Voltage (CNT)	~ 3.5 V (scales to 1V with window, CD & pulse speed)
Write & read time	< 20 ns (CMOS limited)
Current	I (power supply)=1uA/bit
Energy	0.01 fJ / nm2
Window (adjustable)	100 kohm(ON)/100 Mohm(OFF)
Endurance Read disturb	>1E9 cycles (unlimited expected) >1e15 reads (non-destructive)
Retention	>10 years at 300C (Eact~5eV)

NRAM Devices at 99.997% Yield

- -93% of the word lines at 100% bit yield (complete 1Mb bank; 512WLs, 2kb each)
- only ~30 bits in 1Mb bank failing (all in 1st cycle)
- No bit fallouts during cycling
- Total bit yield is 99.997%
- Redundancy adequate to repair the device

Column number (0-2048)

NRAM Data Retention: >10 Years @ 300C

T0= before bake T
T4= after 4 hour bake T
T48= after 48 hour bake T
T168=after 168 hour bake *

T1= after 1 hour bake T24= after 24 hour bake T96= after 96 hour bake Data retention: >10years at 300C (3σ) Activation energy: 5.4eV(median), 4.5eV(3σ)

32kbit / die for each temp

Icell (in μ A) at 1volt

NRAM Endurance: >1E9 Cycles

NRAM Technology Summary

- 140nm 4Mb CNT NRAM samples available
- RAM-like <20ns write & read (non-destructive)
- Unlimited endurance expected (1E9 cycles demonstrated)
- Highest reliability of any NVM: >10 years @ 300C (Eact ~5 eV)
- Minimum size select device for 1T1R cell (scalable to 1V/<10uA)
- Low process cost: no HV transistors; 1 BEOL mask for NRAM
- Scalable technology: <5nm CNT-CNT switch; MLC possible
- 300mm and 200mm CNT spin-on foundry capability available
- Transferrable NRAM POR process using only standard BEOL materials (no exotic metals) worked out

NRAM Memory Applications

- NRAM for post-NAND
 - Scalability to <5nm
 - Low write current
 - Dense 1T1R& 1D1Rcells
 - MLC capable

- NRAM for post-DRAM
 - Scalability to
 <5nm
 - High endurance
 - Fast write time
 - Low write current

- NRAM for embedded
 NVM
 - Low cost
 - Highest reliability
 - Competitive macro size
 - Scalability

