

## Phase Change Memory Landscape

Greg Atwood

Micron Technology

Gatwood@Micron.com



## Phase Change Memory Values

| Attribute       | PCM         | NOR             | NAND                     | DRAM       |
|-----------------|-------------|-----------------|--------------------------|------------|
| Non-Volatile    | Yes         | Yes             | Yes                      | No         |
| Granularity     | Small/Byte  | Large           | Large                    | Small/Byte |
| Erase           | No          | Yes             | Yes                      | No         |
| Software        | Easy        | Moderate        | Hard                     | Easy       |
| Power           | ~Flash      | ~Flash          | ~Flash                   | High (SB)  |
| Write Bandwidth | ~100        | ~1              | ~10                      | ~1000      |
|                 | MB/s        | MB/s            | MB/s                     | MB/s       |
| Read Latency    | 50 - 100 ns | 70-100 ns       | 15 - 50 us               | 20 - 80 ns |
| Endurance       | 106+        | 10 <sup>5</sup> | <b>10</b> <sup>4-5</sup> | Unlimited  |

PCM provides an new set of features combining components of NVM with DRAM



## **Phase Change Memory History**

**January 1955**: Kolomiets/Gorunova - semiconducting properties of chalcogenide glasses

September 1966: Stanford Ovshinsky files first patent on phase change technology

**September 1970**: 256b PCM memory demonstrated – Gordon Moore

**June 1999**: Ovonyx joint venture is formed to commercialize PRAM technology

February 2002: Intel demonstrates 4Mb test vehicle

August 2004: Samsung announces successful 64 Mbit PCM array

**September 2005**: Samsung announces successful 256 Mbit PCM array

July 2006: BAE Systems sells the first commercial PCM, Radiation Hard 512Kx8 chip

September 2006: Samsung announces 512 Mbit PRAM device

October 2006: Intel and STMicroelectronics show a 128 Mbit PCM chip

February 2008: Intel and STMicroelectronics announce four-state MLC PCM

**December 2008**: Numonyx announces production 128 Mbit PCM device

September 2009: Samsung announces production start of 512 Mbit PCM device

October 2009: Intel and Numonyx announce an all thin film 3-D PCM device

**December 2009**: Numonyx announces 1 Gb PCM at 45 nm

April 2010: Numonyx releases Omneo PCM Series (P8P and P5Q), both in 90 nm

April 2010: Samsung releases 512Mbit PCM with 65 nm process, in Multi-Chip-Package



## **PCM** Development Activities

Mainstream Development

> Early Evaluations

Ongoing Research

Prof of Concept Research Scaling the existing architecture, providing the smallest cell size, following the lithography roadmap

Introduction of Multi-Level-Cell exploiting the analog storage capability of PCM

Exploration of new chalcogenide alloys which may open new application fields

Exploitation of a true crosspoint array which will allow vertical stacking of more than one memory layer









3-d corner view of PCMS array