3D-IC is Now Real: Wide-IO is Driving 3D-IC TSV

Samta Bansal, Cadence Flash Memory Summit August, 2012

What the fuss is all about ...

Comparison of package performance: wire-bonding PoP vs wide IO interface with TSV (Courtesy of Samsung)

Samsung Wide-IO Memory for Mobile Products - A Deeper Look

Products - A Deeper Look

* Source : Tech Spot Feb 2011 & Flash Memory Summit August 2011

Micron develops "Hyper Memory Cube" 3DIC technology

SDIC technology

Faster, Denser, Low-power Chips Using 3D-IC TSVs

cādence°

2 © 2012 Cadence Design Systems, Inc. All rights reserved.

CPU to DRAM Existing inter-die connection methods

- ~60 signal pins for a 32-bit LPDDR2 interface (2012 low-mid range smartphone)
- ~120 signal pins for a 2-channel LPDDR2 interface (2012 mid-high end smartphone)
- ~300 signal pins for a 3-channel 64-bit DDR3 interface (2012 PC)

Potential latency and power considerations

• Not commonly used for DRAM at present; future solution?

Pin Count, Power, Latency Concerns?

cādence°

New inter-die connection method - TSV

What is Wide-IO DRAM?

Bandwidth

Possible Future Standard2Tbit/s bandwidth

Possible Future Standard

- 4 128-bit channels
- Total 512bits to DRAM
- 1066MHz DDR (2133MT/s)
- 1Tbit/s bandwidth

Possible Future Standard

- 4-8 64-128-bit channels
- 256-512bits to DRAM
- DDR Interface
- 200-400Gbit/s bandwidth

Possible time of introduction

Current Standard

- 4 128-bit channels
- Total 512bits to DRAM
- 200MHz SDR
- 100Gbit/s bandwidth

What is HMC Architecture?

Abstracted Memory Management	Through-Silicon Via (TSV) Assembly		
Memory Vaults Versus DRAM Arrays	Innovative Design & Process Flow		
Logic Base Controller	Advanced Package Assembly		
Host	Increased Bandwidth, Power Efficiency,		
Hybrid Memory Cube	Smaller Size, Scalability & Reduced Latency		

Micron

September 7, 2012

Micron Confidential | ©2012 Micron Technology, Inc. | 6

Why do you need Wide-IO DRAM?

Bandwidth Requirements of Future Mobile Devices

	LPDDR2 533 MHz		LPDDR3 800 MHz		WidelO 200 MHz	
Solutions	Single Channel	Dual Channel	Single Channel	Dual Channel	Singledie + LPDDR2	Cube
Density (2014)	2x 4 Gb	4 x 4 Gb	2 x 8 Gb	4 x 8 Gb	2 x 8 Gb	4 x 8 Gb
Bandwidth	4.25 GBy/s	8.5 GBy/s	6.4 GBy/s	12.8 GBy/s	17.1 GBy/s	12.8 GBy/s
Power (burst read)	330 mW	660 mW	430 mW	860 mW	730 mW	540 mW
Power / Bandwidth	78 mW/GByps		67 mW/GByps		43 mW/GByps	42 mW/GByps
Cost (2014)	N/R	1	N/R	1.1	1.2	1.4

- ➔ WidelO provides 2x power efficiency compared to LPDDR2/3
- The initial JEDEC proposal is providing 12.8GBytess bandwidth. Increasing DRAM frequency to 266MHz and implementing dual data rate transfers will provide eventually more than 34GBytes/s.

RTI Conference - 13th Dec 2011 A Three-Layers 3D-IC Stack including WidelO and 3D NoC

```
🕫 cādence" 📼 Leti
```

ERICSSON

Why Wide-IO is driving TSV DRAM is the ideal candidate to drive TSV technology

- Usually manufactured on a non-logic process
- Requires high bandwidth connection between CPU and DRAM
- Uneconomic or impossible to place large capacity (Gbits) of DRAM on same die as CPU
- Low power connection between dies desirable
- Possibility of different memory configurations using the same CPU die

Cadence Wide-IO DRAM controller

Challenges	Solutions
Merge existing and new technology	 Start with extensible, high performance, low-power base architecture (Supports DDR1, DDR2, DDR3, LPDDR1, LPDDR2 and now DDR4) Re-add SDR support Add new Wide IO feature support Create DFI extensions for Controller-PHY connection
New testing requirements	 Extend BIST engine to test for new classes of error
Verification	 Create memory model of Wide-IO device in Cadence VIP tools Extend existing configurable verification environment for Wide IO

Real chip, real examples

10 © 2012 Cadence Design Systems, Inc. All rights reserved.

Cadence silicon-proven 3D-IC solution Plan→ implement →test →verify

- Allows heterogeneous integration to offer power, performance in smallest form factor
- Cadence is technology leader providing complete and integrated 3D-IC solution
 - Plan->implement->test->verify
 - 1st to market wide I/O memory controller
- Developed in close partnercollaboration for past 5 years with leading foundries and customers
- Multiple 3D-IC tapeouts
 - Multiple testchip experience: Memory over logic (28 nm), logic over analog, logic over Logic, 3-stack dies
 - Production design tapeout in mid-2010

Several challenges with TSV technology

- Manufacturing Wide-IO DRAM and assembly
 - Test memory wafer after production using FC bumps
 - Thin the wafer to ~50-100um thickness
 - Form TSVs and fill with metal : Requires elevated temperatures
 - No opportunity to test here
 - Backside metal bump pitch too fine for most tester heads
 - Handle dies while avoiding mechanical damage
 - They are now the approximate aspect ratio of a postage stamp
 - Attach dies (and interposers, if present) together
 - Does it still work?

Thermal Issues

- Where does the heat go?

• Ecosystem Issues:

- How many parties involved in stack production?
- How are responsibilities divided?
- How are liabilities divided?

Conclusion

- Wide-IO and TSV are real
- Cadence believes that Wide-IO DRAM is the technology that will drive adoption of TSV
- Cadence stands ready with EDA tools and IP to enable your TSV designs with real experiences and partnerships with ~8 testchips and 1 production chip already completed.

