

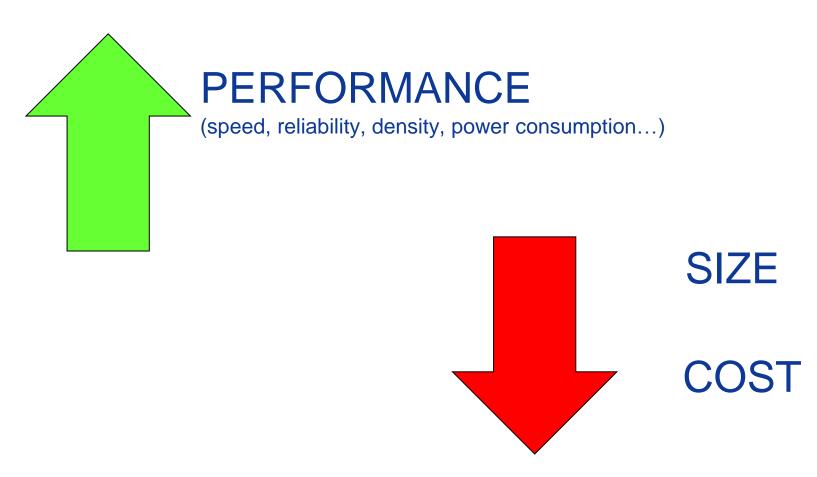
High Density Stacked Nand Flash for SSDs

Pierre Lartigues
Field Application Engineer
3D Plus USA

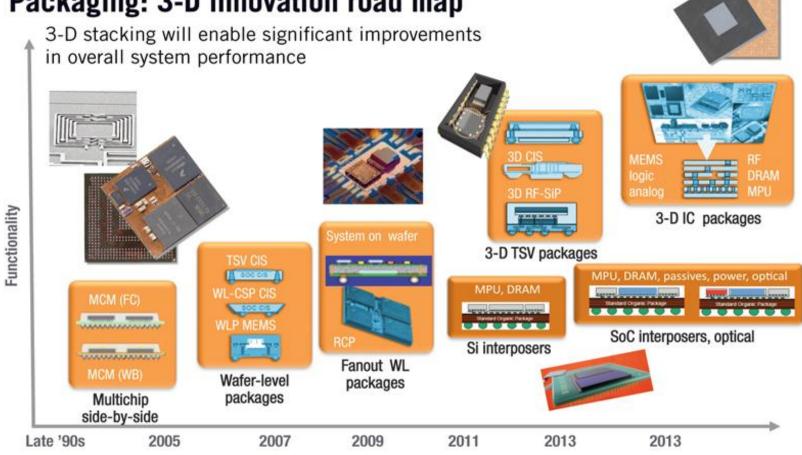
Flash Memory Why Stacking?

Reliability

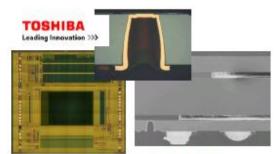
We stack because WE WANT MORE



WITH LESS !!!!


Flash Memory Our quest is:

Many Technologies...


Packaging: 3-D innovation road map

Source: GlobalFoundries

Flash Memory Many Applications...

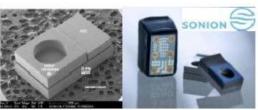
Toshiba CMOS image sensor

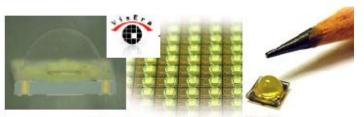
Discera's MEMS oscillator

Avago's FBAR filters & Power amplifiers devices

Omnivision CMOS image sensor

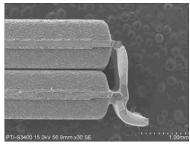
STMicro's CMOS imager sensors & MEMS inertial components


SiTime's MEMS oscillator


VTI 3-axis MEMS accelerometer

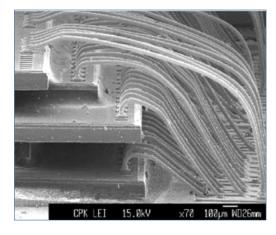
IDEX's fingerprint sensor

Sonion MEMS Silicon-microphone

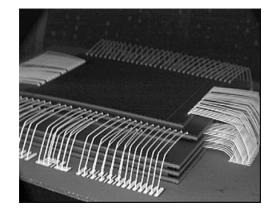


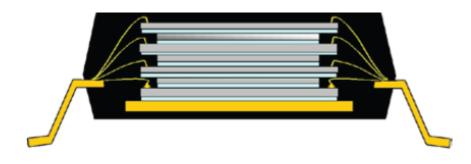
VisEra's HB-LED silicon Module

Back to the future



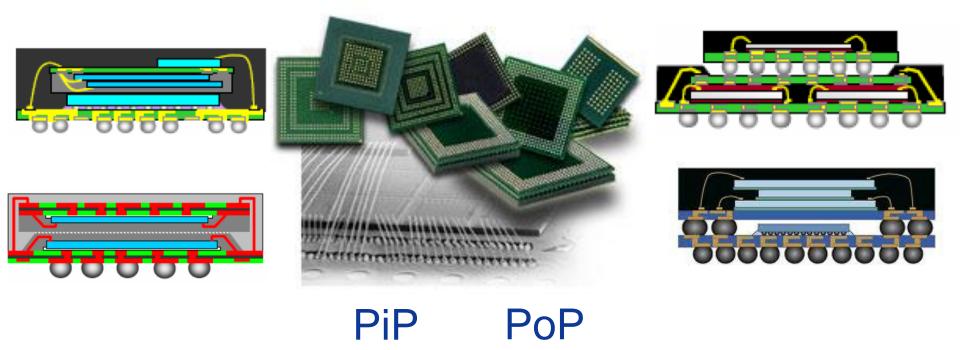
Cheap **Simple** Reliable

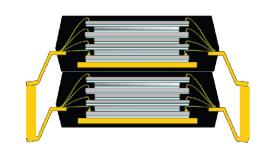

Not so small Only compatible with Tssops 7



But we want more!

Why not stacking dice?



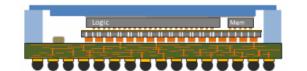

Very good solution. But limited (Yield, number of interconnections...)

We always want more!

Why not stacking packages?

Enough?

It's too slow!

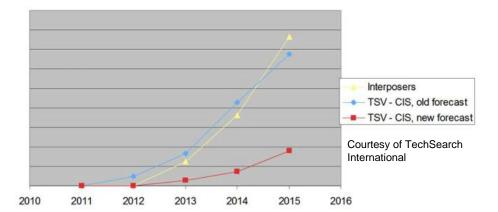

Power consumption is too high!

Flash Memory What is the status now?

Reducing size, increasing performance

Logic Layer

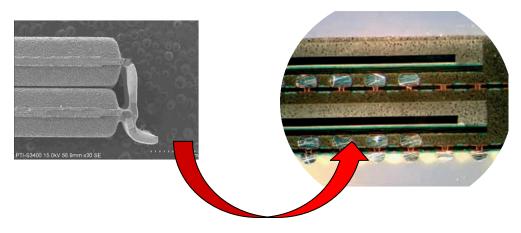
Substrate



And ... Many issues:

Roadmaps keep shifting out.

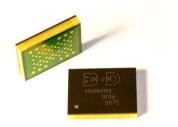
- Availability of simulation tools
- Thermal issues
- Yield? Most of all the debonding step (remove carrier after thinning)
- Bump pitch, warpage (interposers)
- Test (KGD?)
- Roles between TSV and interposer assembly unclear.
- But very promising technology and tremendous variety of applications for memories depending on <u>cost trade-off</u> and <u>reliability data</u>.

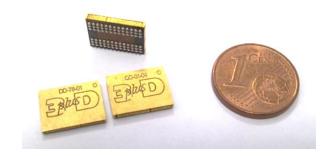


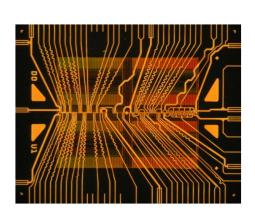
Flash Memory Any alternatives?

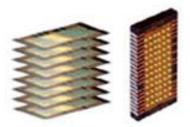
We have solutions:

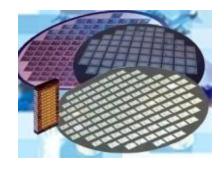
Stacking standard BGAs :






Flash Memory Any alternatives?


We have solutions:



Dice interconnection without TSV :

Flash Memory A wide range of Nand Flash Products:

NAND FLASH ASYNCHRONOUS Part Number Configuration SCD# Density Bits/Cell Voltage (V) Package Pitch (mm) Temperature RoHS 3DFN64G08VB1388 64Gb 8Gx8 SLC LGA 52 1.0 C. I. M Yes or 5/6 3DFP-388 16Gx8 SLC C, I, M 3DFN128G08VL1459 128Gb 3.3 LGA 52 1.0 Yes or 5/6 3DFP-459 3DFN128G08VL1441 128Gb 16Gx8 MLC 3.3 **LGA 52** 1.0 C, 1 Yes or 5/6 3DFP-441 3DFN256G08VL1460 256Gb 32Gx8 SLC 3.3 LGA 52 1.0 C. I. M Yes or 5/6 3DFP-460 C. I 3DFN256G08VL1461 256Gb 32Gx8 MLC 3.3 LGA 52 1.0 Yes or 5/6 3DFP-461 3DFN512G08VL2462 512Gb 2x(32Gx8) SLC 3.3 LGA 52 C. I. M Yes or 5/6 3DFP-462 1.0 3DFN512G08VL1463 512Gb 64Gx8 MLC 3.3 LGA 52 1.0 C, I Yes or 5/6 3DFP-463 3DFN1T08VL2442 1Tb 2x(64Gx8) MLC 3.3 LGA 52 1.0 C, I Yes or 5/6 3DFP-442

NAND FLASH SYNCHRONOUS

Part Number	Density	Configuration	Speed (M1/s)	Bits/Cell	Voltage (V)	Package	Pitch (mm)	Temperature	RoHS	SCD#
3DFN64G08VB1450	64Gb	8Gx8	166-200	SLC	3.3	BGA 100	1.0	C, I, M	Yes or 5/6	3DFP-450
3DFN64G08VB1454	64Gb	8Gx8	166	MLC	3.3	BGA 100	1.0	C, I	Yes or 5/6	3DFP-454
3DFN128G08VB1451	128Gb	16Gx8	166-200	SLC	3.3	BGA 100	1.0	C, I, M	Yes or 5/6	3DFP-451
3DFN128G08VB1455	128Gb	16Gx8	166	MLC	3.3	BGA 100	1.0	C, I	Yes or 5/6	3DFP-455
3DFN128G08VB1601	128Gb	16Gx8	200-333	MLC	3.3	BGA 152	1.0	C, I	Yes or 5/6	3DFP-601
3DFN256G08VB1452	256Gb	32Gx8	166-200	SLC	3.3	BGA 100	1.0	C, I, M	Yes or 5/6	3DFP-452
3DFN256G08VB1456	256Gb	32Gx8	166	MLC	3.3	BGA 100	1.0	C, I	Yes or 5/6	3DFP-456
3DFN256G08VB1602	256Gb	32Gx8	200-333	MLC	3.3	BGA 152	1.0	C, I	Yes or 5/6	3DFP-602
3DFN512G08VB2453	512Gb	2x(32Gx8)	166-200	SLC	3.3	BGA 100	1.0	C, I, M	Yes or 5/6	3DFP-453
3DFN512G08VB1457	512Gb	64Gx8	166-200	MLC	3.3	BGA 100	1.0	C, I	Yes or 5/6	3DFP-457
3DFN512G08VB1603	512Gb	64Gx8	200-333	MLC	3.3	BGA 152	1.0	C, I	Yes or 5/6	3DFP-603
3DFN1T08VB2458	1Tb	2x(64Gx8)	166-200	MLC	3.3	BGA 100	1.0	C, I	Yes or 5/6	3DFP-458

Memory Find out more at:

www.3d-plus.com

« Innovating for More Electronics in Less Space »

