

Low Voltage and High speed Interface in Nand Flash

(1.2V and 800 Mbps IO)

Changhyuk Lee

Email: changhyuk.lee@skhynix.com

SKHYNIX

Outline

◆ Trend of High Performance IO

- Technology Breakthrough (Process and Design)
- Prospect of System Application

Conclusion

Outline

Trend of High Performance IO

Technology Breakthrough (Process and Design)

Prospect of System Application

Conclusion

Interface Roadmap

Enhanced Performance & Expandable Lanes

Page Size Vs IO Bandwidth (Nand)

B/W requirement for mobile Dram

Source: skhynix DRAM marketing team

♦ Trend of High Performance IO

Technology Breakthrough (Process and Design)

Prospect of System Application

Conclusion

Technical Breakthrough

- Nand Flash IO Performance reached limitation (~400Mbps) due to its Peripheral Transistor Limit
- Its Performance Limitation can be overcome by another Slim Gate oxide Transistor equal to that of Mobile DRAM
- Additional Process Cost is about 10% (2D Floating Gate) and 5% (3D Nand)
- SKHynix has both Nand Flash and DRAM Technology, So Technology and Circuit adoption is easier.
- Ref> A 64Gb NAND Flash Memory with 800MB/s Synchronous DDR Interface, Hwang Huh, 2012 4th IEEE International Memory Workshop

Addition of Slim Transistor

- ♦slim Tr. with Tox=~ 3nm is additionally built up in conventional Flash Tr.
- ◆Transmitter/Receiver made of thin Tr. can't support 800Mb/s/pin at VCCQ=1.2V
- Simple solution?: Thin Tr. Tox reduction
- ◆ However, Tox reduction of thin Tr. would degrade cell reliability.

	Conventiona I NAND	HS-IO NAND	Remark
Thick Transistor (Tox = ~ 50 nm)	Ο	0	For high voltage generation and transfer
Thin (Medium) Transistor (Tox= ~ 10 nm)	Ο	0	For peripheral circuitry, Tox is limited by flash cell tunnel oxide thickness
Slim Transistor (Tox= ~ 3 nm)	X	Ο	For IO-speed related circuitry, Operation voltage=1.2V

Block diagram

- Power domain split (HV and LV)
- Keep Source Power of HV pump as
 3.3V

Change the power of data in/out path

and other peripheral area to 1.2V

- ✓ HV to LV Interface Circuitry
- ✓ 1.2V Analog and Digital Circuitry
- ♦ Local IO Sense Amp

Split Power Page buffer

A workaround for avoiding slim Tr. breakdown voltage issue

 \rightarrow Addition of Thin Tr. and proper its gate bias control.

→ Adequate sequence is proposed : Precharge/Discharge Sequence

LSA Data In/Out Architecture

LSA Data In/out architecture makes sensing time less than 5 ns. \rightarrow IO/IOb line is divided into proper segments and LSA is additionally implemented in each segment.

Current Reduction

1.2V 800MB/s diminishes the IO & data path current remarkably.

 \rightarrow IO current in read operation gets reduced due to Tx junction capacitance reduction & IO swing voltage down.

→ Average Data path current of is similar to that of conventional case, but Data transfer time is reduced to half, total Charge is reduced

 \rightarrow System power consumption reduction resulted from current reduction and operation voltage down (P=IV) => Increase # of interleaving chips due to power reduction

Estimated average current [mA]		Conventional (3.3V/1.8V, 400MB/s)	This work (1.2V/1.2V/3.3V, 800MB/s)	
	VccQ (IO)		70mA	55mA
Deed	Vcc (Data		80mA	82mA
Vcc (tR)	Vcc	1 plane	24mA	\leftarrow
	(tR)	2 plane	31mA	~
	Vcc (Data path)		85mA	87mA
Program	Vcc (tPROG)	1 plane	27mA	\leftarrow
		2 plane	34mA	\leftarrow

Characteristics of Thin/Slim Transistors

A transmitter composed of slim Tr. (Slim Tr. Tx) can support 800Mb/s/pin.

 \rightarrow The on-resistance of slim Tr. is lower than that of thin Tr.

- \rightarrow Slim Tr. Tx shows lower pin cap. than Thin Tr. Tx due to reduced Tr. width for specific driver strength (ex. 40 ohm)
- \rightarrow It meets the data valid window(~0.75 ns) for 800Mb/s/pin

 \rightarrow The addition of slim Tr. can make IO speed improved to more than 800Mb/s/pin (ex. 1066 Mb/s/pin).

Char.	Thin Tr.	Slim Tr.
Gate Oxide Thickness	~100Å	~30Å
Gate Type	Single Poly Gate	Dual Poly Gate
Operation Voltage	2.3V	1.2V
Nominal Tr. Length	0.3um	0.1um
Saturation Current	~250uA	~250uA
Breakdown Voltage (Gate Oxide/Junction)	~5V/~5V	~1.5V/~2.3V
Capacitance	High	Low

Simulated output waveform

1UI=0.75 ns, target data valid window:0.5UI

Chip Architecture & Structural Features

Feature	Value	
Bit per Cell	2	
Density	64Gb	
Technology	1X nm F.G	
Organization	2-plane × 16KB × 128 pages × 4K blocks × 8-I/O	
Program Performance	20MB/s	
I/O Bandwidth	800MB/s	
Erase Time	5ms	

Outline

Trend of High Performance IO

Technology Breakthrough (Process and Design)

Prospect of System Performance

Sequential Read

Sequential Read Performance is maximized when IO bus is full of Data Transfer Time.

In Sequential Read Operation, more Number of Chip Interleaving enhances Read Performance,

If tR < (N-1) x tData (N= Number of Chip Interleave)

Therefore Enhancing Nand IO bps directly affects Controller to Nand Interface Performance, with

Appropriate Number of Chip Interleave

(2 Die in 400Mbps => 4 Die in 800Mbps in this Example)

Sequential Write

- ✓ Sequential Write Performance has the same logic with Sequential Read
 Performance.
- ✓ The maximum Write Performance Criteria is $tPROG < (N-1) \times tData$
 - (N= Number of Chip Interleave)
- ✓ Ideally 16 Die Interleave is possible in 800Mbps in this case (8 die in 400Mbps), but Power Drop limitation due to many Interleaving Dies has another Limitation.
- ✓ Therefore, state of the art Performance (400Mbps) seems maximum 4 die interleave.
- ✓ 1.2V IO operation may help overcoming the Limitation by Power Drop (helps
 25% Interleaving Numbers Die increasing by simple calculation)

Random Read Operation (1)

Before Make comparison of 400Mbps and 800Mbps Data Rate, Let's make a few Simple Approximation

- Random IOPS = Data size/ (Read Time + tECC)
 - Read Time = Map Read + Data Read
- ◆ Consider using SLC buffer techniques, because it is widely used.

Map Read is executed from SLC buffer (Ram size is small) or RAM memory (Ram size is large)

Data Read is executed from SLC buffer (Hot data) or MLC (Cold data)

When Command Queuing is used, High freq IO is more effective

More Hot data hit rate and using enough RAM memory, and More Die Interleave Numbers and Flash memory aligned workload and File System \Rightarrow High frequency data IO is more effective

	R/R IOPS		diffor	Circale Accuration of Operation
Cases	400 Mbps	800 Mbps	ance	Simple Assumption of Operation
cold data	29.6K	34.8K	17%	Map Read (SLC) + Data Read (MLC)
hot data	42.1K	53.3K	27%	Map read (SLC) + Data read (SLC)
hot data (RAM)	57.1K	80.0K	40%	Map read (RAM) + Data read (SLC)
hot data (RAM), 2 x tDATA	36.4K	57.1K	57%	
hot data (RAM), 4 x tDATA	21.1K	36.4K	73%	N x tDATA means data transfer/die is
hot data (RAM), 8 x tDATA	11.4K	21.1K	84%	

Assumption

SLC read: 25us

Data transfer per die: 4kB

MLC read: 60us

tECC: 10us

•

Random Write Performance

◆ In case of random write performance, Nand Data transfer time (~80us) is very small compared with tPROG (~ 1500us)

Random Write Operation is more complex than Random Read

High frequency effect is negligible at present, but similar to Random Read Case, when Hot data hit rate ,enough RAM memory ,Die Interleave Numbers and Flash memory aligned workload and File System etc are ready, High frequency IO may get more effective.

Outline

Trend of High Performance IO

Technology Breakthrough (Process and Design)

Prospect of System Application

Conclusion

Conclusion

♦ As Nand Flash memory user's Interface Performance is rapidly Increasing, Technical Breakthrough of Nand Flash IO is required.

- We presented 1.2V 800MB/s IO Process and Design for the Worldwide 1rst Time
 - ✓ A 30-nm gate oxide slim Tr. was introduced in conventional Flash Tr.
 - ✓ Split Power page buffer
 - ✓ LSA Data In/Out architecture, etc
 - \checkmark IO and Data path current was reduced.
- System Performance compared with that of 400MB/s
 - ✓ Sequential Read Performance can be doubled with More Die Interleave and Random Read Performance can be improved with Die interleave and Innovation of System level control
 - ✓ Write performance can also be improved effectively if Power drop due to Multi
 Die Interleave can be managed