

Increase Controller Performance & Energy Efficiency

Without sacrificing programmability

Chris Rowen

Founder, CTO Tensilica

Who is Tensilica?

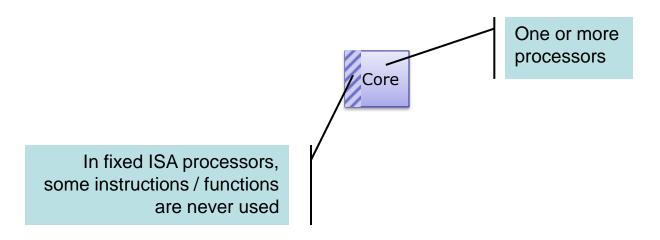
Leading supplier of processor cores and SW for "data-plane"

Business Model – Semiconductor IP licensing

- Processor IP for the data plane
 - Deeply embedded control, DSP, application-specific accelerators
- Shipping in over 20 application areas
 - Storage, Audio, Baseband, Printers, Cameras, Network infrastructure/access...
- Licensed by several major flash controller companies

Market

- Nearly 2 Billion cores shipped!
 - Run-rate approaching 1B cores/yr
- 190+ Licensees worldwide
 - By 8 of the top 12 semiconductor manufacturers
 - In 7 of the top 12 Smartphone manufacturers' products



Company Facts

- Privately held. Venture backed. Profitable, cash positive for many years.
- Headquarters and major operations in Santa Clara, CA
- Sales offices worldwide (US, UK, Japan, Korea, China, Taiwan)

Your current design has one or more processor cores...

...you need 2x more processing in the next design, but energy consumption & programmability are also important.

What are your options...

Eg: 2x faster in next design – what are the options?

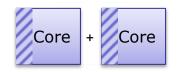
Run the core at 2x clock frequency

May not be possible

Benefits

Easy development

Costs


Lower energy efficiency

Pushing process limits results in a proportionally larger & higher power core.

Eg: 2x faster in next design – what are the options?

Add more cores

Benefits

Manageable hardware changes.

Familiar development environment.

Costs

Software partitioning work.

Coherency management in Hardware and/or Software

Similar energy efficiency
A little worse from management overhead

Eg: 2x faster in next design – what are the options?

Offload bottlenecks with RTL

Benefits

Higher energy & area efficiency.

Small software changes.

Costs

RTL development and significant verification.

Lose programmability in RTL state machine.

Eg: 2x faster in next design – what are the options?

Offload bottlenecks with Xtensa using TIE

Xtensa is configurable.

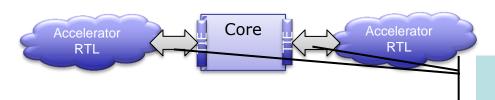
Do not include instructions / functions that are never used

Benefits

Higher energy & area efficiency.

Dramatically less verification.

Small software changes.


Costs

Modest TIE hardware development.

Eg: 2x faster in next design – what are the options?

Directly interface to accelerators for faster I/O

Up to 1024 bits wide. Multiple connections. GPIO, FIFO, Memory

Benefits

Multi high bandwidth interfaces. Up to 1024 bits each, simultaneously.

Avoids system bus.

No arbitration, frees up bandwidth.

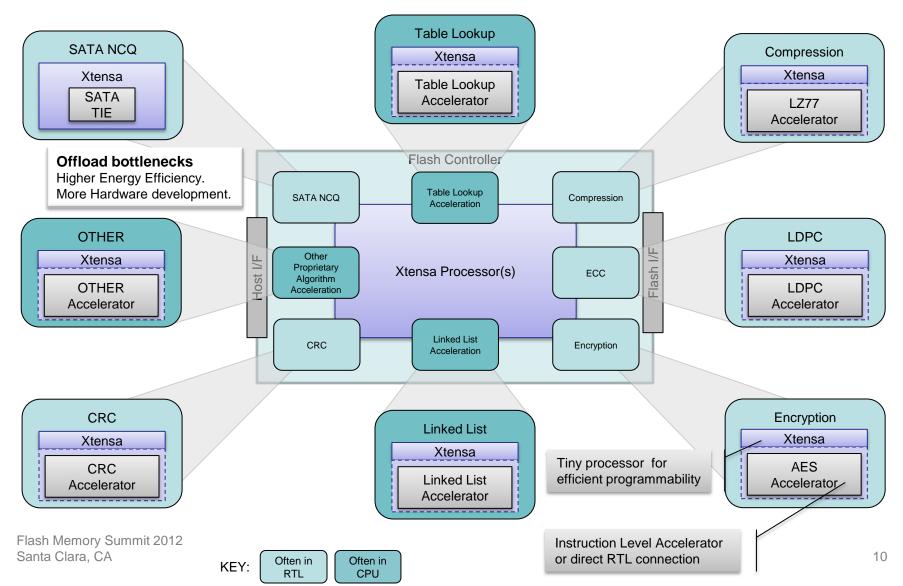
Predictable latency.

Costs

Add simple TIE instructions to define interfaces.

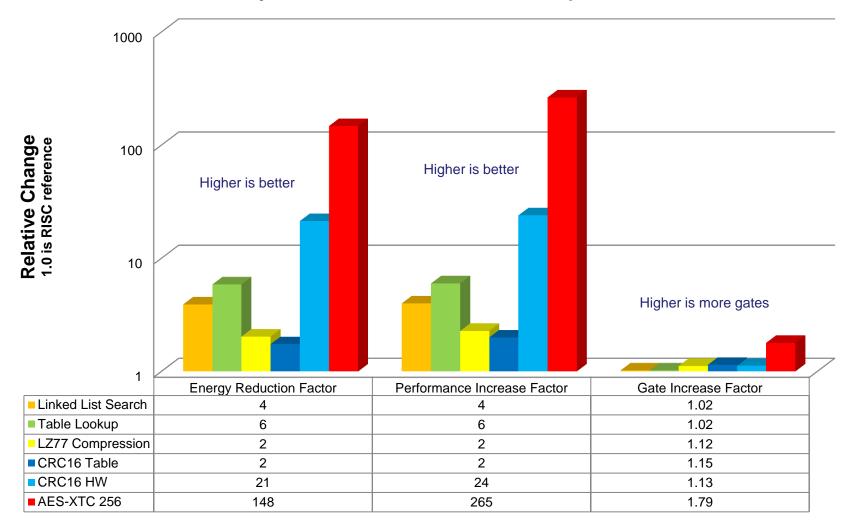
Small software changes.
Instruction controlled interface rather than memory mapped.

Eg: 2x faster in next design


Summary of development options

Option		Δ Size	∆ Energy Efficiency	∆ Software	∆ Hardware
Core	Current design	-	-	-	-
Core	2x MHz If possible	~<2x	<1x	0	0
Core + Core	Multiple Cores	~2x	~1x	Large Coherence, Partitioning	Small Resource arbitration
With identifiable bottlenecks					
Core + RTL	Offload Cycle reduction	<<2x	>>1x	Small Interfacing	Very Large RTL Design + Verification
Core	Xtensa Cycle reduction	<<2x	>>1x	Very Small Add intrinsics	Small ¹ TIE Design

¹ Typically small, can scale with desired performance improvement


... with programmability in your flash controller

Flash Controller Offload

Summary of real Xtensa examples

Flash Memory For more information

Find your regional contact online: www.Tensilica.com

Email

storage.info@tensilica.com