

How SSDs Fit in Different Data Center Applications

Tahmid Rahman

Senior Technical Marketing Engineer NVM Solutions Group

1

Flash Memory Summit 2012 Santa Clara, CA

- SSD market momentum and drivers
- Placement in server/storage applications
- Application specific requirements and workload characteristics
- Proof points with SSDs in transaction processing, IT, virtualization
- Call to action

Strong SSD Momentum in the Market

Worldwide SSD Unit Sales1

Millions

Strong SSD Momentum in the Market

Millions

Strong SSD Momentum in the Market

Drivers Behind Data Center Storage

Architectural Changes –

- Big data
- Cloud
- Software innovation for caching, tiering
- Server Side Innovations-
 - De-duplication, compression
 - Thin-provisioning
 - Virtualization

Interface transitions

- SATA/SAS to PCIe
- AHCI based to NVMe

SSD endurance and performance grades

- Endurance classes high, medium, standard
- Optimization for access read intensive, write intensive, mixed workload
- Different "out of the factory" spare area level

Flash Memory Summit 2012 Santa Clara, CA

Flash Memory

SSD Placement in Server/Storage Application

Usage	Applications	Compute (Servers)	External Storage	
Cache (Low, Deterministic Latency, \$/ IOP	IPDC Web 2.0	Persistent cache:	Persistent Cache:	
Performance (\$/IOP/GB)	IPDC web2.0	Hot Application Data (Web, Database, Email, Search, Videos, IPDC etc)	Hot Application Data	
Capacity (\$/TB, Watt/TB)	Data Warehous e	Luke-warm Application Data	Cold/Luke- warm	
Boot (\$/GB)	All Server Applicatio	Local boot data (Operating System, Hypervisor, SWAP, VM, Application Image)	Local boot Data:	

Highest Requirements for Data Center SSDs

Flash Memory

- Data Integrity
 - True End to End data protection
 - Power Loss Protection
 - Power loss cap self test
 - Protection of internal memory with ECC and parity
- Predictable Performance
 - IOPS variation needs to be within a narrow range
 - Latency outliers should be within a max value
- High Endurance Requirement
 - Two primary endurance evolving
 - Standard endurance 0.1-1 DWD
 - High endurance 10 DWD

Data Center Application Workload Characteristics

Applications	Transfer Size	% Random	% Read	Write. Endurance	Quality of service	
Media Streaming	64KB	Low	High	Med	Med	0
Web-server Logging	8KB	Low	Low	Med	Med	Sequential
Search Engine	4KB/8KB/ 16KB	High	High	Low	High	
Video-On-Demand	128KB	High	High	Low	High	Random Read
Caching	512KB	High	High	Low	Med	
Decision Support	64KB	High	High	Low	High	
Content Delivery Network	16KB/32KB	High	Mixed	High	High	
Database OLTP (On Line Transaction Processing)	4KB/8KB	High	Mixed	High	High	Mixed Random

Source: Industry Standard Benchmarks and Customer Engagement Data Patterns will vary for unique customers

Tuesday, August 21, 12

7

SSDs For Virtual Storage in the Cloud

Challenges

Flash Memory

SUMMIT

- Reversed server to data store ratio (multiple VMs running on single array)
- Adding storage and cache is cost prohibitive

Solutions

•High Performance SSD 3x8 RAID5 meeting multiple VM random IOPS of ~100K w/ SW SAN solution

Impact

- Expanded performance at a lower cost >75% TCO reduction
 - 450 15K RPM HDDs vs. 24 Intel 710 SSDs
 - IT professional would spend \$43K instead of \$200K+

SSDs for Transaction Processing

- TPoX* (Transactional Processing over XML*) is an application-based benchmark that mimics a storage-bound online transaction procession over XML data for brokerage
- Intel® SSD 910 Series, reveals a replacement ratio of 1 to 180 with Standard Magnetic Drive Solutions
- 1 TB database can be compressed in one single PCIe card and meet the performance of 180 magnetic storage 15K RPM SAS drives

PCIe SSD Based Solution

Server: Exercising Application Load

4 x 4Gb/s

"Fiber Channel"

HDD Based Solution

Configuration: Intel® Xeon® Processor X5680 (3.33 GHz, 6.40 GT/s Intel® QPI) platforms with Intel® 7500 Chipset, 72GB (18x4GB), 800MHz DDR3 memory, SUSE SLES 11 SP1 operating system, DB2 9.7, and TPoX 2.0 using "M" factor scale (1 TB data size). Hitachi* HUS151P1 CLAR146 146GB SAS 15K RPM drives.

http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/ssd-910-tpox-brief.pdf

- Transaction processing requires dense IO (Higher IOPS/GB)
- Systems tune to have no "storage bottleneck"
- No Mercy for latency outliers and occasional drops of IOPS

- Transaction processing requires dense IO (Higher IOPS/GB)
- Systems tune to have no "storage bottleneck"
- No Mercy for latency outliers and occasional drops of IOPS

- Transaction processing requires dense IO (Higher IOPS/GB)
- Systems tune to have no "storage bottleneck"
- No Mercy for latency outliers and occasional drops of IOPS

- Transaction processing requires dense IO (Higher IOPS/GB)
- Systems tune to have no "storage bottleneck"
- No Mercy for latency outliers and occasional drops of IOPS

SSDs for IT Management Services

- Automatic Updates for IT security patches
- Managing Design Simulation database
- Swap operation for over-flow memory
- Benchmarking and proof points

Enterprise Patching and Security Compliance Performance Comparison With 15K RPM Drive

Flash Memory Summit 2012 Santa Clara, CA

Acknowledgement: Christian Black, Intel IT Architect

12

Flash Memory

"Zero" IOPS!

"Zero" IOPS!

- ← RAID Array stalls and timeouts
- ← Higher drive counts to meet IO needs

"Zero" IOPS!

- ← RAID Array stalls and timeouts
- ← Higher drive counts to meet IO needs

Negative SLA impacts ightarrow

Catastrophic for certain applications ightarrow

- ← RAID Array stalls and timeouts
- ← Higher drive counts to meet IO needs

1 sec max latency!

- Ample opportunity for SSD proliferation within data center
- Innovate around applications needs
- Use faster interface and technology to unleash NAND backend bandwidth