

A Design for Networked Flash

(Clusters Of Raw Flash Units)

Mahesh Balakrishnan, John Davis,
Dahlia Malkhi, Vijayan Prabhakaran,
Michael Wei*, Ted Wobber
Microsoft Research Silicon Valley

* Graduate student at UCSD

Disk Capacity 1980s

Transfer Rate 1980s

Latency

1980s

Capacity/Bandwidth **Large Transfers**

Capacity/Bandwidth **Small Transfers**

128 Mb

~50 MB/s

4 Mb ~200 MB/s 2.5ms @ 1 byte

512 Gb ~50 MB/s 1,280 s @ 4k

Bit line 6 F2

MTJ

Source Drain

Silicon substrate

NAND Flash

Phase Change

STT-RAM

~320GB **\$7,000** \$21/GB 500GB-10TB **\$10,000+** \$20/GB 2 TB **\$88,000** \$44/GB

5

PCle 3.0 x16: 16 GB/s

iSCSI: 10 Gb/s

SAS: 12 Gb/s

~320GB

\$7,000

\$21/GB

500GB-10TB

\$10,000+

\$20/GB

2 TB

\$88,000

\$44/GB

PCIe 3.0 x16: 16 GB/s

iSCSI: 10 Gb/s

SAS: 12 Gb/s

~320GB **\$7,000** \$21/GB

500GB-10TB \$10,000+ \$20/GB 2 TB **\$88,000** \$44/GB

PCle 3.0 x16: 16 GB/s

iSCSI: 10 Gb/s

SAS: 12 Gb/s

~320GB **\$7,000** \$21/GB 500GB-10TB \$10,000+ \$20/GB

2 TB **\$88,000** \$44/GB

5

Outline

- The I/O Story
- CORFU Overview
- Hardware Platform
- Conclusion

flash in the data center

How can we leverage flash in distributed systems?

Can flash clusters eliminate the trade-off between consistency and performance?

What new abstractions are required to manage and access flash clusters?

The CORFU Architecture

The CORFU Architecture

Cluster of raw flash units

The CORFU Architecture

Cluster of raw flash units

- No Bottlenecks
- **Fault Tolerant**
- **Highly Scalable**
- Low Power (10W /unit)
- Cheap (@ Cost of Flash)

flash cluster

flash cluster

Replicated, fault-tolerant append
read from anywhere append to tail

flash
cluster

Replicated, fault-tolerant append
read from anywhere append to tail
flash
cluster

the case for CORFU

applications append/read data

why a shared log interface?

- 1.easy to build strongly consistent (transactional) applications
- 2.effective way to pool flash:
 - 1. SSD uses logging to avoid write-in-place
 - 2. random reads are fast
 - 3. GC is feasible

CORFU is a distributed SSD with a shared log interface

getting 10 Gbps random-IO from 1TB flash farm:

	Configuration	Unit cost	Unit power consumption	Summary
competition	ten SATA SSDs in 1Gbps server	\$200/SSD + \$2K/ server	150W	\$22K 1500W fault tolerance incremental scalability
	individual PCI-e controller in 10 Gbps server	\$20K/Enterprise controller + \$10K/server	500W	\$30K 500W fault tolerance incremental scalability
CORFU	ten 1Gbps CORFU units (no servers)	\$50/raw flash + \$200/custom- made controller	10W	\$2.5K 100W fault tolerance incremental scalability

application

CORFU library

application

CORFU library

10 11 12 13 14 15 16

application

CORFU library

10 11 12 13 14 15 16

application

CORFU library

application

application

application

application

application

application

application

application

application

CORFU library

10 11 12 13 14 15 16

application

application

CORFU library

application

application

CORFU library

application

application

CORFU library

application

CORFU library

10 11 12 13 14 15 16

application

CORFU library

application

CORFU throughput (server+SSD)

[CORFU: A Shared Log Design for Flash Clusters, NSDI 2012]

- 10 Gbps router X 16 servers (1 Gbps) X 2 SSDs per server
- Reads bounded by network bandwidth
- Writes are replicated, and bounded by sequencer throughput

The CORFU Hardware Platform

2 Prototype Systems

- XUPv5
 - Virtex5 XC5VLX110T
 - 2 GB DDR2 RAM
 - 2x SATA 2.0
- BEE3
 - Virtex5 XC5VLX155T x4
 - 8GB DDR2 RAM
 - 8x SATA 2.0
 - 32/64GB Flash DIMM

The CORFU Hardware Platform

2 Prototype Systems

- XUPv5
 - Virtex5 XC5VLX110T
 - 2 GB DDR2 RAM
 - 2x SATA 2.0
- BEE3
 - Virtex5 XC5VLX155T x4
 - 8GB DDR2 RAM
 - 8x SATA 2.0
 - 32/64GB Flash DIMM

Hardware Design

- Simple, low power, cheap, naturally pipelined
- No interrupts; no thread synchronization; polling throughout
- No data copying
- Can implement time-sensitive functions in logic
- Frequency: 100 MHz

- Simple, low power, cheap, naturally pipelined
- No interrupts; no thread synchronization; polling throughout
- No data copying
- Can implement time-sensitive functions in logic
- Frequency: 100 MHz
- power: 15W

- Simple, low power, cheap, naturally pipelined
- No interrupts; no thread synchronization; polling throughout
- No data copying
- Can implement time-sensitive functions in logic
- Frequency: 100 MHz
- power: **15W**
- tput: ~27,000 reads /sec (4KB) ~ 920 Mbps

- Simple, low power, cheap, naturally pipelined
- No interrupts; no thread synchronization; polling throughout
- No data copying
- Can implement time-sensitive functions in logic
- Frequency: 100 MHz
- power: 15W
- tput: ~27,000 reads /sec (4KB) ~ 920 Mbps
- end-to-end latency (measured at NIC):
 - reads: **75 μsecs**
 - non-mirrored appends: 200 μsecs

Applications

- Key-Value Store
- Virtual Block Device
 - Shared
 - Full rollback
- Distributed Synchronization (ZooKeeper)

Conclusion

Conclusion

Conclusion

Route: 52.8 mi, 3 hr 32 min From Paxos to CORFU... CORFU is a distributed SSD: 1 million write IOPS, linearly scalable read IOPS CORFU is a shared log: strong consistency at wire speed **Paxos** CORFU uses network-attached flash to construct inexpensive, power-efficient clusters